
ENABLING THE AUTOMATION OF
HANDLER BINDINGS
IN EVENT-DRIVEN PROGRAMMING

YungYu Zhuang and Shigeru Chiba
The University of Tokyo

FRP and Signals	

�  FRP (Functional-reactive programming) was
developed for reactive programs
◦  Signals (behaviors)
�  To describe continuous data streams, e.g. mouse position

◦  Event streams
�  A series of events on the timeline, e.g. mouse click
�  Used to get a snapshot of signals at a specific time

Enabling the Automation of Handler Bindings in Event-Driven Programming, YungYu Zhuang and Shigeru Chiba, The University of Tokyo

A simple example: spreadsheet	

� Can be regarded as an

interactive programming
environment
◦  Cells are fields
◦  Sheets are some sort of objects

� A cell can contain a constant
value or an expression
◦  B1 = 2
◦  C1 = 1
◦  A1 = B1 + C1 ß updated automatically when the

 value of B1 or C1 is changed

A1	
 =B1+C1	

A	
 B	
 C	

1 3	
 2	
 1	

2

Enabling the Automation of Handler Bindings in Event-Driven Programming, YungYu Zhuang and Shigeru Chiba, The University of Tokyo

Use spreadsheet
program to

define a sheet	

It’s easy to implement the sheet with signals	

1.  <body onload="loader()">
2.  <table width=200>
3.  <tr><th>A1</th>
4.  <th>B1</th>
5.  <th>C1</th>
6.  </tr>
7.  <tr><th><input id="A1" size=2 value="0" /></th>
8.  <th><input id="B1" size=2 value="2" /></th>
9.  <th><input id="C1" size=2 value="1" /></th>
10.  </tr>
11.  </table>
12. </body>
13. 
14. <script type="text/flapjax">
15.  function loader() {
16.  var b = extractValueB("B1");
17.  var c = extractValueB("C1");
18.  var a = b + c;
19.  insertValueB(a, "A1", "value");
20. }
21. </script>

Flapjax: JavaScript-based FRP
[L. A. Meyerovich et al, OOPSLA’09]

Extract a signal (behavior)
from UI component	

Insert a signal (behavior) into UI component	

Simply describe
them as in

spreadsheet
programs!	

Enabling the Automation of Handler Bindings in Event-Driven Programming, YungYu Zhuang and Shigeru Chiba, The University of Tokyo

Wait a minute! We already have events	

� Event-driven programming has been
developed for a long time
◦ Widely used in OO libraries

� Can’t we use events to implement this
sheet example?
à Yes, of course we can.	

Enabling the Automation of Handler Bindings in Event-Driven Programming, YungYu Zhuang and Shigeru Chiba, The University of Tokyo

We can also implement it with events	

1.   class Sheet {
2.  var a: Int = _
3.  var b: Int = _
4.  var c: Int = _
5.  def setB(nb: Int) { b = nb; }
6.  def setC(nc: Int) { c = nc; }
7. 
8.  evt eb[Unit] = afterExec(setB)
9.  evt ec[Unit] = afterExec(setC)
10.  def ha() { a = b + c; }
11.  eb += ha;
12.  ec += ha;
13. }

EScala: Scala-based event system
[V. Gasiunas et al, AOSD’11]

An event occurring after the
specified method is executed	

Add a handler (right-hand side)
to the event (left-hand side)	

The relation is
described in a handler	

Enabling the Automation of Handler Bindings in Event-Driven Programming, YungYu Zhuang and Shigeru Chiba, The University of Tokyo

Both of them state “a = b + c”, but…	

�  In the signal version
◦ The assignment looks like an equation

�  In the event version
◦ Only effective just after it is executed
◦ Might not be “true” until it is executed again

 signal version:

 :
var a = b + c;
 :

 event version:

 :
evt eb[Unit] = afterExec(setB)
evt ec[Unit] = afterExec(setC)
def ha() { a = b + c; }
eb += ha;
ec += ha;
 :

 Enabling the Automation of Handler Bindings in Event-Driven Programming, YungYu Zhuang and Shigeru Chiba, The University of Tokyo

Our proposal: expanding event systems	

� To provide the automation in handlers
à  allow binding a handler to all events inside

itself automatically
1.  Automatic inference
�  Can find out eb and ec according to ha

2.  Implicit binding
�  Can bind ha to eb and ec

� A prototype implementation:
ReactiveDominoJ (RDJ)

Enabling the Automation of Handler Bindings in Event-Driven Programming, YungYu Zhuang and Shigeru Chiba, The University of Tokyo

RDJ is a Java-based language
�  Such a method-like declaration can be both

event and handler.
�  public void setX(int nx) {

 this.x = nx;
}

◦  Add a handler to the event s.setX
�  s.setX += o.update;
◦  Add the handler s.setX to an event
�  t.tick += s.setX;

Syntax:
⟨event⟩ ⟨assignment operator⟩ ⟨handler⟩;

Enabling the Automation of Handler Bindings in Event-Driven Programming, YungYu Zhuang and Shigeru Chiba, The University of Tokyo

The braces operator in RDJ	

�  ⟨event⟩ can be also a handler within {}
◦  To select all the involved events inside a handler

�  E.g. {ha} refers to all the involved events in ha
◦  // enables the automation

{this.updateA} += this.updateA();
◦  {_} += this.updateA; // “_” refers to the right one

à  RDJ compiler will do the rest
◦  Infers the involved events and binds the handler to them

Enabling the Automation of Handler Bindings in Event-Driven Programming, YungYu Zhuang and Shigeru Chiba, The University of Tokyo

Compare RDJ version with Flapjax-like version	

Flapjax-like version
1.  public class PlusSheet
2.  extends Sheet {
3.  public PlusSheet() {
4.  :
5.  Behavior b = b1.extractValueB();
6.  Behavior c = c1.extractValueB();
7.  Behavior a = b + c;
8.  a1.insertValueB(a);
9.  }
10.  }

RDJ version without {}
1.  public class PlusSheet
2.  extends Sheet {
3.  public PlusSheet() {
4.  :
5.  b.setValue += this.changed;
6.  c.setValue += this.changed;
7.  this.changed += this.updateA;
8.  }
9.  public void changed(int v);
10.  public void updateA(int v) {
11.  a.setValue(b.getValue() + c.getValue());
12.  }
13.  }

RDJ version with {}
1.  public class PlusSheet
2.  extends Sheet {
3.  public PlusSheet() {
4.  :
5.  {_} += this.updateA();
6.  }
7.  public void updateA() {
8.  a.setValue(b.getValue() + c.getValue());
9.  }
10.  }

No need to manually
enumerate all events	

In order to make it easier to compare we assume
that there were a Flapjax-like Java-based language	

Enabling the Automation of Handler Bindings in Event-Driven Programming, YungYu Zhuang and Shigeru Chiba, The University of Tokyo

What RDJ compiler does	

� A binding with {} is boiled down
◦  {_} += this.updateA();
à b.setValue += this.updateA();

 c.setValue += this.updateA();

� No need to manually ensure the consistency
between bindings and handler body
◦ Reduce the risk of bugs
◦ Make code shorter

Enabling the Automation of Handler Bindings in Event-Driven Programming, YungYu Zhuang and Shigeru Chiba, The University of Tokyo

Implicit vs. Explicit!	

� That’s the difference between FRP and
existing event systems

� The braces operator makes it implicit
◦ As what signals do

� What is the insufficiency in existing event
systems?
◦  i.e. how the braces operator does?

Enabling the Automation of Handler Bindings in Event-Driven Programming, YungYu Zhuang and Shigeru Chiba, The University of Tokyo

Let’s check the meaning of signals again	

� A signal (a)
◦  Is reevaluated when any of the signals (b, c) in its

expression is reevaluated
◦ Then all signals whose expressions contain this

signal (a) will be reevaluated as well

a = b + c	

Signal assignment	

Signal	
 Expression	

For detailed description of signals and signal
assignments, please refer to our paper	

Enabling the Automation of Handler Bindings in Event-Driven Programming, YungYu Zhuang and Shigeru Chiba, The University of Tokyo

How signals are translated in event systems	

�  A signal is a field (a) with an event (ea)
�  Its assignment is a handler (ha)
◦  The handler is executed when any of events (eb, ec)

in its expression occurs
◦  Then its event (ea) occurs and other fields using

the field (a) in their expressions will be set

a = b + c	

Handler for updating the field	

Field	
 Expression	

bound to
the events in

the expression	

Not automatic
at all	

Enabling the Automation of Handler Bindings in Event-Driven Programming, YungYu Zhuang and Shigeru Chiba, The University of Tokyo

Actually RDJ is built on top of DJ	

�  RDJ expands DJ (DominoJ*)
◦  By enabling the automation in method slots*

◦  But the idea can be applied to any event system

� A method slot is an object’s property
◦  A “field” holds an array of function closures

object s : class Shape

int x
methodslot setX …

(void (int nx)) { target.update(nx); }
| target = o

(void (int nx)) { this.x = nx; }
| this = s

*Our previous work presented at AOSD’13:
Enabling the Automation of Handler Bindings in Event-Driven Programming, YungYu Zhuang and Shigeru Chiba, The University of Tokyo

method slots can be
used as both events

and handlers!	

Method slots: supporting methods, events, and advices
by a single language construct	

How to infer events in OO design	

�  Finding writers by a given reader through fields
1.  Check all closures in the given method slot
2.  Find out fields read by the closures
3.  Find out the method slots that write these fields

�  An extended getter-setter relation
◦  Reader-writer

reader
method slots

writer
method slots

fields on the
owner object the braces operator

takes one of them

Enabling the Automation of Handler Bindings in Event-Driven Programming, YungYu Zhuang and Shigeru Chiba, The University of Tokyo

The inference overheads at runtime are negligible	

�  Since the automation is boiled down at compile-time
◦  But not zero in RDJ since closures can be added at runtime

 The performance of DJ, RDJ w/ and w/o optimization
(Execute binding/unbinding with {} one million times to get the average)

Enabling the Automation of Handler Bindings in Event-Driven Programming, YungYu Zhuang and Shigeru Chiba, The University of Tokyo

0

2000

4000

6000

8000

1 2 3 4 5 6 7 8 9

na
no

se
co

nd
s	

breadth: the number of reference
carried in the default closure	

RDJ1

RDJ2

DJ

OpenJDK 1.7.0 65
Intel Core i7 2.67GHz
4 cores 8GB memory	

Optimized
version	

the overheads of
creating closures	

the inference
overheads	

The limitations	

�  Difficult to filter only the events for value change
◦  Setting the same value also causes reevaluation

�  Propagation loop cannot be totally avoided
◦  RDJ only avoids binding a handler to the events in itself	

�  Other limitations due to DJ
◦  Only fields can be translated to signals
◦  Only fields are used to infer involved events
◦  The usage of the braces operator is not declarative

Enabling the Automation of Handler Bindings in Event-Driven Programming, YungYu Zhuang and Shigeru Chiba, The University of Tokyo

Related work	

�  Existing event systems
◦  Ptolemy, EventJava, EScala
◦  Lack the implicit style

� Using events and signals together
◦  Frappé, SuperGlue
◦ Only use signals in a limited scope/component

�  Library approach
◦  Flapjax, Scala.React, Rx.NET
◦ Need to manually specify which fields are signals

Enabling the Automation of Handler Bindings in Event-Driven Programming, YungYu Zhuang and Shigeru Chiba, The University of Tokyo

Conclusions and future directions	

� We pointed out the insufficiency in existing
event systems
◦  By analyzing signals from the viewpoint of events

�  Expanding event systems to support the
implicit style in reactive programming
◦  Show the feasibility by a prototype implementation

�  Future directions
◦ Make the automation more declarative in RDJ?
◦  React at object-level?

Enabling the Automation of Handler Bindings in Event-Driven Programming, YungYu Zhuang and Shigeru Chiba, The University of Tokyo

