
Method Slots:

 Supporting Methods, Events, and Advices

 by a Single Language Construct

YungYu Zhuang and Shigeru Chiba

The University of Tokyo

Method Paradigm in OOP

More and more paradigms are

supported by dedicated constructs

2

Event-handler Paradigm

EScala, C#, EventCJ, Ptolemy, …

Aspect Paradigm

AspectJ, AspectC++, CaesarJ, …

event,

handler

aspect,

advice,

pointcut

class,

field,

method

What we want to learn are paradigms,

Not constructs!

 Supporting by new constructs is a trend

◦ Even for existing paradigms like event-handler

◦ e.g. C# and EScala

 However, not all constructs are easy to
learn!

◦ e.g. AspectJ

 How about reusing constructs?

3

How about integrating the constructs

in the three paradigms

4

OOP

Aspect
Event-

handler

An aspect is a kind of class.

Advice is a kind of method.

Events are bound to methods.

Handlers are methods.

Pointcuts look like events.

Advices work as handlers.

 Their constructs and implementation are very similar

◦ Although the problems they address are quite different

Goal

 Develop a new language supporting

◦ Event-handler paradigm

◦ Aspect paradigm

 By a single construct!

 Extend the most basic one

◦ Method paradigm

(a method in JavaScript)

5

You know the methods in JavaScript…

 Methods (function closures)

can also be held in fields
◦ setX = function(int nx) { this.x = nx; } // assign the method

◦ setX // return the method

◦ setX(10) // call the method

6

object s : class Shape

int x

function setX
(void (int nx)) { this.x = nx; }

| this = s

Our Proposal: Method Slots

 Extend the Method paradigm

◦ A “field” holds an array of function closures

rather than a function closure

7

object s : class Shape

int x

methodslot setX
(void (int nx)) { target.update(nx); }

| target = o

(void (int nx)) { this.x = nx; }
| this = s

The behavior of a method slot

 When a method slot is called

◦ All closures in it are executed in order

 With the arguments given to the method slot

 If its return type is not void
◦ The return value is returned by the last closure

 Every closure can get the return value of the previous

closure by a keyword $retval

 A default value (0/false/null) is given to the first closure

 No closures in it? Just returns the default value

8

C1 C2 methodslot … CN-1 CN

DominoJ: introduce method slots into Java

 No methods, only method slots

 No closures in Java!

  Give 4 operators to handle closures in a method slot

◦ <expr>.<methodslot> <op> <expr>.<methodslot>;

 Method slots at both sides share the same type
(return type and parameter types)

 Create a closure calling the right one,
and add or remove to/from the left one
 += append to the end of the array
 ^= insert at the beginning of the array
 -= remove such closures from the array
 = add and remove the others from the array

◦ For example, s.setX += o.update;
 Create a closure { o.update(…); } and append it to s.setX

9

Unlike JavaScript,

Java has class declaration and inheritance!

 A method slot is an object’s property

 Static method slots are kept on the class objects

 Cannot be declared as local variables

 Declare the same method slot in subclasses

 Overrides the one in the superclass

 The overridden one can be called through super

(it only contains the default closure)

 The overriding one is selected according to the

actual type of the object

10

DominoJ code at a glance

 The declaration looks like

a method declaration

◦ The body is the default

closure (optional)

11

object s: Class Shape

int x

methodslot setX (void (int nx)) { this.x = nx; }
| this = s

public class Shape {
 public int x;
 public void setX(int nx) {
 // default closure
 this.x = nx;
 }
}

An example of using Event-handler in

typical event mechanisms

 Suppose the Display object should be refreshed
after the position of Shape objects are set

 The typical way in an event mechanism like
EScala or C#

◦ Expose an event moved for setPosition in s
◦ Bind d.refresh to moved

12

object s: Class Shape

event moved

method setPosition

object d: Class Display

method refresh

It is possible

in DominoJ

Use DominoJ to write the Event-handler example

13

object s: Class Shape

int left;

int top;

methodslot setPosition

object d: Class Display

methodslot refresh (void (int x, int y)) { … // refreshing }
| this = d

(void (int x, int y)) { target.refresh(x, y); }
| target = d

(void (int x, int y)) { this.left=x; this.top=y; }
| this = s

 s.setPosition += d.refresh; // Add a closure calling d.refresh
 s.setPosition(0, 0); // d.refresh will be called

1

2

3

Compare the code for this example

in EScala and in DominoJ

 In EScala (based on Scala)
class Display() {
 def refresh() {
 System.out.println("display is refreshed.")
 }
}
class Shape(d: Display) {
 var left = 0; var top = 0
 def setPosition(x: Int, y: Int) {
 left = x; top = y
 }
 evt moved[Unit] = afterExec(setPosition)
 moved += d.refresh
}

14

 In DominoJ (based on Java)
public class Display {
 public void refresh(int x, int y) {
 System.out.println("display is refreshed.");
 }
}
public class Shape {
 private int left = 0; private int top = 0;
 public void setPosition(int x, int y) {
 left = x; top = y;
 }
 public Shape(Display d) {
 this.setPosition += d.refresh;
 }
}

 The event declaration can be omitted.

◦ Any public method slots are regarded as events.

This break the encapsulation? No!

 Follow the visibility in OOP

◦ Rely on the visibility of method slots

◦ A public method slot is always visible as an

event to other objects

 Simpler but limited

◦ Cannot separate the event from a method

 Declare a higher-level event?

15

“Any method slots can be events.”

Higher-level events are also possible

 Declare an empty method slot,
and let it be triggered by another one
public void moved();
setPosition += moved;

16

setPosition

refresh

moved

: Method, : Event, : Method Slot

afterExec

+=

setPosition

refresh

setPosition

refresh

moved

+=

+=

+=

(a) EScala version (b) DominoJ version (c) Another DominoJ version

Compare DominoJ with EScala
Type EScala DominoJ

ro
le

 Event field (evt)
method slot

Handler method

b
in

d
in

g

Event-to-Handler
+= +=

-= -=

Event-to-Event

|| +=, ^=

&&

\

filter

map

empty

any

use Java expression

in the default closure

of method slots

Handler-to-Event

afterExec +=

beforeExec ^=

imperative explicit trigger is possible

17

Check the example

from the viewpoint of Aspect

 Suppose we have

◦ Display class and Shape class

◦ A crosscutting concern: when to refresh

 In AspectJ, we can write such an aspect

18

 public aspect UpdateDisplay {

 after() returning:

 execution(

 void Shape.setPosition(int, int)) {

 Display.refresh();

 }

 }

In DominoJ, classes can be aspects,

method slots can be advices

 Class-based behaviors?
◦ Emulate by binding method slots in constructors

 Obliviousness?
◦ Attach to public method slots (including constructors)

 No complicated instantiation models
◦ Need to manage objects manually

19

 public Shape() { this.setPosition += Display.refresh; }

 public class UpdateDisplay {

 public static void init() {

 ((Shape)$predecessor).setPosition += Display.refresh;

 }

 static { Shape.constructor += UpdateDisplay.init; }

 }

Using the keywords $predecessor and $caller

to get preceding objects in a call sequence

 Suppose s.setPosition is called in c.test
where c is an object of class Client

 c.test  s.setPosition  d.refresh

20

object c : class Client

 methodslot test

default closures

closures created by operators implicitly call according to bindings

explicitly call in the default closure

objects given by the keywords

object s : class Shape

 methodslot setPosition

{ System.out.println($precedessor==$caller);
: }

object d : class Display

 methodslot refresh
{ System.out.println($precedessor==$caller);

: }

Rewrite AspectJ code by DominoJ

 In AspectJ
public class Display {
 public static void refresh() {
 System.out.println("display is refreshed.");
 }
}
public class Shape {
 private int left = 0; private int top = 0;
 public void setPosition(int x, int y) {
 left = x; top = y;
 }
}
public aspect UpdateDisplay {
 after() returning:
 execution(
 void Shape.setPosition(int, int)) {
 Display.refresh();
 }
}

21

 In DominoJ

public class Display {

 public static void refresh(int x, int y) {

 System.out.println("display is refreshed.");

 }

}

public class Shape {

 private int left = 0; private int top = 0;

 public void setPosition(int x, int y) {

 left = x; top = y;

 }

}

public class UpdateDisplay {

 public static void init() {

 ((Shape)$predecessor).setPosition

 += Display.refresh;

 }

 static { Shape.constructor += UpdateDisplay.init; }

}

 Obliviousness and class-based behaviors are possible

Compare DominoJ with AspectJ

Construct AspectJ DominoJ

grouping aspect class

code piece advice body
method slot body

(default closure)

pointcut

and advice

declaration

after returning and execution += and $retval

before and execution ^=

around =

this $caller

target $predecessor

args by parameters

22

Advices for advices are possible

 If you think attaching CheckDirty to UpdateDisplay
is more meaningful…

◦ Yes, you can do it in DominoJ!

23

Shape

setPosition

UpdateDisplay

advice

Shape

setPosition

UpdateDisplay

init

CheckDirty

verify

: Method, : Advice, : Method Slot

(a) AspectJ version (b) DominoJ version

①

② CheckDirty

advice

AspectJ

EScala

DominoJ

Event-handler vs. Aspect
 In my opinion, they are the same except

◦ Object-based or Class-based?

◦ Non-obliviousness or Obliviousness?
 Impossible to support contradictory things at the same time
 unless giving both constructs

 DominoJ want to make all available by one construct,
and let programmers decide how to use
◦ Different from Object-based AOP languages?  Simpler

24

Class-based

Object-based

Obliviousness

Non-

obliviousness

We think it’s

more flexible!

Can emulate it!

Use private!

Related Work

 The delegation in C#

◦ A delegate is similar to a method slot

◦ Events and methods are separate constructs

 Delegation-based AOP

◦ Supports the mechanisms in OOP and AOP

◦ A proxy delegates messages to an object

 Ptolemy

◦ Treat the execution of any expression as an event

◦ Events are global, class-based

25

Conclusion

 We proposed a simple and generic construct

 ---Method slots

◦ Covering most functionality of

 Event-handler paradigm

 Lack of rich event expression

 Aspect paradigm

 No inter-type declaration and reflection

 Future work
◦ Supporting more paradigms

◦ Case study

26

