
A Lightweight Push-pull Mechanism for Implicitly
Using Signals in Imperative Programming

YungYu Zhuang∗

Department of Computer Science and Information Engineering,
National Central University,

No. 300, Zhongda Rd., Zhongli District, Taoyuan City 32001, Taiwan (R.O.C.)

Abstract

While signals can express time-varying values well, they heavily rely on the se-

mantics of dataflow programming and functional programming. Several research

have developed mechanisms for using signals with imperative object-oriented

design and shown the benefits of its usage. However, they tend to introduce a

class for signals, which thus results in the necessity of lifting up/down between

variables and signals. We have already proposed an automation mechanism to

expand event systems to support signals without introducing a class, and in this

paper, we further extend it to a lightweight push-pull model by considering the

direction of trigger. The push-pull automation mechanism allows programmers

to choose between push and pull to declaratively express their intention and

to reduce the overheads due to unnecessary propagation of value changes. To

show the feasibility of our proposal, we implemented PuPPy as an extension

to Python for helping programmers in declaring fields as signals. With PuPPy,

programmers can use signals in Python without any event system and do not

have to worry about the type of events and handlers. We evaluated PuPPy by

running preliminary microbenchmarks and comparing with signal class libraries,

pure event systems, and the implementation in our previous research.

Keywords: Event-driven programming, reactive programming, signal, behavior

⋆This is an author-produced version of an article accepted for publication in the Journal
of Computer Languages following peer review. The published journal article is available at
https://doi.org/10.1016/j.cola.2019.100903. © 2019. Licensed under the CC-BY-NC-ND 4.0.

∗Corresponding author, yungyu@acm.org

Preprint submitted to Journal of Visual Languages and Computing May 20, 2019

2010 MSC: 00-01, 99-00

1. Introduction

Reactive behavior is quite common, especially in programs that have GUI

design and data update. For example, in an application drawing 3D graphs on

screen, we expect the graph can react to user operations such as mouse dragging

and finger gesture. The application should be able to rotate and resize based5

on our operations without delay. If the application polls the position of mouse

cursor at a regular interval, users might need to wait and the user experience

is bad. If the data of 3D graphs come from a backend, we also expect to get a

notification when the data are updated. To write such kind of programs, one

approach is to implement the Observer pattern [1], which allows to subscribe a10

callback for being executed later. When users dragged the graph or the data

were modified, the callback will be executed for reacting to the update. The

Observer pattern looses the coupling between objects in an object-oriented de-

sign and allows subscribing and unsubscribing a handling at runtime. However,

massively implementing this pattern for various response in a program makes15

it hard to understand and maintain. In a naive implementation, the code for a

single subject-observer pair might scatter over different objects, and the code for

different subject-observer pairs in a system might be tangled with each other.

This breaks the rule of separation of concerns [2]. Although several abstraction

such as interfaces and aspects can be used to ease the problem by separating pat-20

tern code from others [3], the problem is not completely resolved. Programmers

cannot help but implement pattern code. Furthermore, the Observer pattern

also encourages programmers to violate several software engineering principles

such as side effects, encapsulation, and data consistency as discussed by Maier

and Odersky [4].25

Event-driven programming can be a replacement for the Observer pattern.

In a language that directly supports events, subscription and notification can

be simply set up by language constructs and operators without pattern code.

2

This makes programs easier to describe reactive behavior. Nevertheless, in this

approach, the way of considering reactive behavior is basically the same as using30

the Observer pattern—monitoring the changes of some variables and executing

specified functions in response to those changes. In other words, the changes are

discrete and handled imperatively. On the other hand, the approach of reactive

programming [5] uses signals to represent such changes. This concept describes

changes such as the position of mouse cursor as time-varying values but not35

static states. Signals can be given to functions for drawing an animation rather

than a static graph. Instead of imperatively saying how to do for the reactive

behavior, it lets programmers to define what the reactive behavior is to improve

the abstraction of reactive programs. However, this approach has a functional

flavor, and thus there is some space to design a mechanism fitting imperative40

object-oriented languages. How to make the design of signals simple is an issue.

To address this issue, we propose a push-pull automation mechanism to

improve the usage of signals in imperative programming. We base this research

on our previous research result, the automation mechanism [6]. In this paper

we further discuss the push and pull model upon the automation mechanism to45

clarify the direction of trigger, and then propose a declarative push-pull model

for enabling the automation. The contributions of this paper are twofold. First,

we show a source and sink model to discuss the direction of propagation and

trigger for signals and events, and propose a push-pull automation based on this

observation. Second, we compare the design of signals and events in different50

systems. We implemented our proposal, PuPPy, as an extension to Python [7] to

show how the push-pull automation can bring signals into an imperative object-

oriented programming language even without an event system. The reasons

why we implemented on Python include its simplicity of syntax and dynamic

typing. Python is one of the mainstream languages that are frequently used55

in scientific computing, and its users might not be programming experts; we

expect our users can benefit from signals without worrying about typing. The

details of our implementation are mentioned as well.

3

2. Motivation

The variables we usually talk about in imperative programming store fixed60

values that represent certain states, but signals are a special kind of variables

that hold time-varying values. To distinguish between signals and other vari-

ables, in this paper, we use normal variables to refer to those variables that are

not signals. The origins of signals might include dataflow programming, but

the concept we discussed here comes from functional-reactive programming [5].65

Signals are convenient to describe several behaviors in real world, for example

hardware signals from devices and the motion of user’s mouse input. We can

then use signals to compose other signals. For example, suppose that we have

two signals named a and b. Then we can simply compose them to generate

another signal c with the following signal assignment:70

c = a + b

Whenever the value of a or the value of b changes, the value of c will be

automatically updated. Such an assignment looks like giving an expression ”=

a + b” to a cell named c in spreadsheet programs, where a and b are cell names.

Signals are very useful to describe data flows. However, it is not possible to75

regard all variables as signals since in imperative programming variables are

used to statically store states, e.g. fixed values. When we bring this concept to

imperative programming, we have to face the problem that how to distinguish

signals from normal variables. How could we know whether a is just a normal

variable or a signal, i.e. should we update c whenever the value of a changes? To80

address this issue, signals are usually introduced as a special kind of variables,

especially a predefined class in object-oriented languages [8, 9, 10]. Such a

class-like structure is used to wrap a fixed value or an expression for updating

the value. For example, in REScala, a sophisticated Scala library supporting

signals, we can define a and b as follows [11]:85

va l a = Var (2)
va l b = Var (3)

Then we can compose them to another signal c as shown below:

4

va l c = S i g n a l { a () + b () }

Since a and b are instances of the Var class, and c is an instance of the Signal90

class, we have enough information on how we should update the value of c. We

explicitly say that a and b are signals rather than normal variables. To get the

current value inside a signal, we can use the following method:

c . now

It returns 5 in this case according to the expression between the braces following95

the Signal for c. If we use the statements shown below to change the value of a

and then get the current value of c again:

a s e t 4
c . now

it will return 7 based on the latest values of a and b. As a result, there are two100

kinds of things for holding states in the language: normal variables and signals.

Normal variables hold values statically, while signals hold values dynamically.

Here Var is used to lift up a fixed value or a normal variable to a signal, while

the now method can be regarded as lifting down a signal to a normal variable in

order to get its fixed value. As to Signal, it is a mechanism to lift up a normal105

variable with its assignment to a signal.

Without signals programmers can use events to propagate value changes,

though it might be slightly annoying in such a trivial case. In a typical event

system, we need to prepare events for a and b, and manually bind the handler

that updates the value of c to these events. For example, in EScala [12], events110

for a and b look like this:

evt ea [Un i t] = afterExec (setA)
evt eb [Un i t] = afterExec (setB)

where setA and setB are the setter functions for a and b. The two lines of code

declare two events that will be triggered after the execution of the two setter115

functions, respectively. Note that Unit is a type in Scala, and declaring an event

with Unit means that the event does not carry any value. We can prepare a

handler function, for example hc, which contains the assignment ”c = a + b”:

def hc () { c = a + b ; }

5

and bind this handler hc to the events for a and b, i.e. ea and eb:120

ea += hc ;
eb += hc ;

Comparing with signals, programmers need to declare events for the variables

and bind handler functions to those events. Although in the design of several

event systems such as EScala and C#, events may carry values, basically events125

do not participate in calculation; events are used for handler bindings. This

is quite different from signals, which participate in calculation. Event-driven

programming is explicit. Programmers need to prepare events and handlers,

then bind them manually. On the other hand, reactive programing is implicit.

Programmers do not need to explicitly propagate value changes with additional130

statements.

This motivated us to propose a declarative push-pull automation based on

our previous research result [13, 6]. Although the proposed automation mech-

anism eliminates the difference between signals and normal variables, there is

some room for improving its design and the prototype implementation. First,135

the direction of triggering the reevaluation in current design is one-way. It al-

ways pushes changes to the variable at the left-hand side, i.e. the current value

of c in this example, even if we do not need the current value inside it right

now. It is possible to avoid unnecessary reevaluation by pulling the changes

when we really need the current value as discussed in several research [14, 15].140

Second, the way to enable the automation is not declarative. It means that a

variable can be a normal variable at the beginning and become a signal later.

Such a design is based on event systems and is very flexible, while it might

be unnecessary when using them as signals; signals tend to be declarative in

order to express data flows without taking runtime conditions into account. In145

this declarative push-pull proposal, programmers may choose between normal

variables and signals when they declare variables, and specify the direction of

triggering the reevaluation to make their intention clear and prevent bugs. Nev-

ertheless, programmers do not have to lift up/down between normal variables

and signals in the program.150

6

c = a + b

!"#$%&'%(("#$)*$+

!"#$%& ,-./*(("0$

(a)

c = a + b

!"#$%&'()*'(+,$"-.#/(-0&(1"'."2%&

3"'."2%& 45,'&66.*#

2*+#$(-*
-0&(&1&#-6(.#
-0&(&5,'&66.*#

(b)

Figure 1: Signal assignments can be translated to events, handlers, and bindings.

3. A two-way automation: push and pull

To satisfy the need of implicitly using signals in imperative programming

while avoiding unnecessary propagation of value changes, we propose a two-way

model based on the automation mechanism in our previous research result [6].

In order to explain how we base this proposal on it and show the difference, we155

briefly explain the original one, discuss the direction of trigger and propagation

in events and signals, and then explain our push-pull automation proposal. As

to the implementation, it is explained in Section 4.

3.1. The original automation mechanism

The automation of handler bindings we proposed can expand event systems160

to support signals in imperative programming. To explain its idea here, we bor-

row the figures from those papers [13, 6] and modify them to fit our motivating

example as shown in Figure 1. The mechanism is a kind of automation for event

systems, which can translate the signal assignment in Figure 1(a):

c = a + b165

where a, b, and c are all signals, to the handler bindings in Figure 1(b):

• a normal variable assignment for c,

• two events ea and eb for marking the value changes of a and b,

• and a handler hc bound to the above two events, which contains the as-

signment ”c = a + b”.170

7

!

"

#
$

%&'%!(!)*'+

,*(+!-,

(a)

!"

!#

!$
%$

&'(&")"*+(,

!-!,*.

(b)

Figure 2: The value changes can be propagated with signals and events, respectively.

However, the automation mechanism only supports one-way trigger direc-

tion. When to trigger the propagation of value change is only determined by the

events ea and eb. Even though we do not need the latest value of c right now,

the reevaluation is triggered. Furthermore, if ea and eb occur successively and

there is no side effect expected to be executed twice, merging the two events175

can avoid unnecessary evaluation. To distinguish from the new automation

mechanism we are going to propose in this paper, we use the term ”the original

automation mechanism” to refer to our previous proposal [6].

3.2. The direction of propagation

To consider the direction of trigger, we may first think about how value180

changes of variables are propagated and the direction of propagation. We can

regard signals as a way to propagate value changes. As shown in Figure 2(a), we

use nodes to represent signals and use edges with an arrow to mark the direction

of propagation. In the junction of edges, an operator is noted for showing how

the value changes are composed. In Figure 2(a), the value changes of the signals185

a and b are propagated to another signal c, and the operator used to compose

the two propagation is +.

On the other hand, events in a typical event system are used to mark changes

in module and loose the coupling between modules. Events are flags for invoking

the execution of functions without knowing those functions exactly. In imper-190

ative programming, value changes are important events since values represent

states in a program. We can use events to propagate value changes as what

signals do. In this example, in order to propagate the value change of a to

8

!"#$%&

!"#$%&

"' !"#$%&
!()*

"'

'$"'+,+-(")

.+$(+/0&!

Figure 3: Value changes are propagated from source nodes to sink nodes.

c, we can first prepare an event ea for the variable a and bind the handler hc

for updating the value of the variable c to ea. Then once the value inside the195

variable a changes, the event ea will be triggered, and the handler bound to ea,

i.e. hc, will be executed for updating the value of c. With events programmers

can avoid to hard-code the function calls for handling value changes and it is

even possible to switch between different handling at runtime. When a handler

function for the event such as hc modifies the values in other variables, in this200

example c, it might further trigger other events for those modified variables

such as ec, and causes the execution of its handler functions. In other words,

the value changes of certain variables are propagated to other variables as what

signals do. We can use similar figures to represent such a propagation as shown

in Figure 2(b). Note that now the nodes in the figure are events rather than205

signals, and they are composed by handlers instead of operators. Figure 2(a)

can be translated to Figure 2(b) if we prepare a corresponding event for every

variable and proper handlers for composing the propagation.

For either signals or events, we can consider such a series of propagation as

a process of propagating value changes from source to sink. We use Figure 3210

to unify the figures for showing the propagation of value changes with signals

and events. The nodes marked with source are the signals or events that start

propagating value changes, and the node marked with sink is the one we are

observing, i.e. the signal or event representing a variable at the left-hand side

in the assignment. Figure 3 shows that the direction of propagation is fixed:215

9

!"

!#

!$
%$

&'(&")"*+(,

!-!,*.

*'+))!'

&/.%

&/.%

(a)

!"

!#

!$
%$

&'(&")"*+(,

!-!,*.

*'+))!'

&/00

&/00

(b)

Figure 4: The direction of triggering the propagation can be push or pull.

values changes are always propagated from source nodes to sink nodes since

it represents the direction of assigning the result in the assignment. When we

construct the relation through an assignment, the direction of propagation is

fixed: propagating value changes from the right-hand side to the left-hand side.

3.3. A push-pull automation mechanism220

Traditionally the direction of triggering the propagation is the same as the

one of propagation. It means that the timing of starting the propagation is the

same as the timing of value changes. Source nodes gradually push the changes

to sink nodes as shown in Figure 4(a). The original automation mechanism

made it possible to automatically push value changes of source nodes to sink225

nodes. However, we can also let the timing of starting the propagation be the

timing of retrieving the value of sink node, i.e. pulling the latest values inside

source nodes when the value of sink node is needed as shown in Figure 4(b).

The push and pull model is not new and has been discussed in several research,

but here we use the model to think about the propagation of value change in230

the original automation mechanism.

This proposal further considers the direction of trigger in order to make

programmers’ intention clearer, while preserving automatic inference and im-

plicit binding in the original automation mechanism. We extend the original

automation to support both push and pull in a declarative way. Undoubtedly235

the direction of propagation is fixed, but the direction of trigger can be push or

10

1 def push-pull(modifier, declaration, assignment):
2 sink = assignment.lhs # left-hand side
3 expr = assignment.rhs # right-hand side
4 sources = find_sources(expr)
5 if sources is empty:
6 fallback_normal(declaration, assignment)
7 else:
8 h = create_handler(assignment)
9 if modifier is ’push’:
10 for s in sources:
11 es = find_changing_events(s)
12 for e in es:
13 e.bind(h)
14 else: # ’pull’
15 es = find_retrieving_events(sink)
16 for e in es:
17 e.bind(h)

Figure 5: The pseudo-algorithm of the two-way automation mechanism.

pull, depending on how programmers specify in the declaration for the variable.

The original automation we proposed [6] can be enabled by handler binding

statements. In this proposal we limit the enabling to declaration, but let pro-

grammers to specify push or pull model by the corresponding modifiers:240

(’push’ | ’pull’) ⟨declaration⟩

The two-way automation mechanism can be enabled by declaring with push

or pull modifier at the beginning. Strictly speaking, the declaration here is a

declaration along with an assignment. Figure 5 shows how the two-way automa-

tion takes such a declaration and creates handler bindings for programmers. At245

runtime, value changes will be pushed or pulled to/from the sink node according

to these handler bindings, respectively. The behavior of the push declaration

(Line 9–13) is the same as the original automation in our previous proposal,

which ensures every value change from source nodes is propagated steadily. On

the other hand, the pull declaration will only ask for the propagation when250

someone needs the value of sink node (Line 14–17). This declaration looks

like the signal assignment in other systems, but there is no need to explicitly

distinguish signals from normal variables in its expression. In the push-pull au-

11

!"#$! " # $ %

&'())*'

&'())*'

(a)

!"## ! " # $ %

&'())*'

&'())*'

(b)

Figure 6: Declaring with the modifier push or pull.

tomation mechanism, enabling the automation in an event system is declarative

rather than dynamic. The automation for an assignment can only be enabled in255

the declaration that declares the variable we are assigning; it is not allowed to

dynamically enable by any kind of statements later. Furthermore, programmers

have to clearly specify which model to use for the variable at the left-hand side

in this declaration. The variable at the left-hand side of the declaration will

be regarded as signals and cannot be reassigned later. This design decision is260

not only for fixing the trigger model for signals, but also for avoiding toggling

between signals and normal variables later. To show the difference between

the two models, we add the two modifiers before the assignment ”c = a + b”

respectively and mark the direction of trigger with dashed lines as shown in

Figure 6(a) and Figure 6(b). Note that here type is omitted for simplifying265

the explanation. In Section 4, we concretely show how to use the push-pull

automation mechanism in our prototype implementation.

3.4. source and sink in the push-pull automation

Programmers can use the variables that have been declared with push or

pull at the right-hand side of a push/pull declaration to propagate value270

changes from source nodes to sink nodes as what it does in Figure 3. For

example, the following declarations propagates value changes from the variable

a to the variable c through the variable b:

a = 0
pu l l b = a + 1275

push c = b + 1

12

!"#$%&!'()

* +%

,#!-

,$",+.+/'"(

0+$'+*1&!

/$'..&$

,#11

Figure 7: Propagating the value change of a to c with pull and push.

Table 1: The difference of using push and pull for b and c in Figure 7.

for b for c when to update b when to update c

push push changing the value of a changing the value of a or b

pull push retrieving the value of b changing (retrieving) the value of b

push pull changing the value of a retrieving the value of c

pull pull retrieving the value of b retrieving the value of c

Figure 7 shows both the propagation and trigger direction among the three

variables. Note that a is a normal variable rather than a signal no matter

whether we declare it with push/pull or not—since push and pull are used

to describe the trigger between the declared variable and the variables involved280

in its evaluation at the right-hand side, a declaration without any involved

variable will fall back to a normal variable declaration. Table 1 shows the four

possible combination if we consider using push or pull for b and c in Figure 7.

The cases of using push or pull for both b and c extend the propagation of

value change based on their evaluation strategies, respectively. Since the two285

modifiers are used to specify the edges rather than the nodes themselves, it is

possible to pull values from signals declared with push; source nodes will always

hold the latest values and wait for sink node’s pulling. On the contrary, asking

signals declared with pull to push their values as shown in Figure 7 is also

possible. In that case, the value change of source nodes will not be pushed to290

sink node until their values are retrieved. However, applying push and pull

to individual source nodes at the right-hand side of a signal declaration is not

allowed.

There is also a risk of propagation loop in this proposal as in other reactive

13

designs and spreadsheet programs. When the values of signals depend on each295

other, the value changes will be propagated endlessly. We can regard the prob-

lem as detecting cycle in a directed graph, where vertices are signals and edges

are push/pull arrows. Since signals are specified by declaration, it is possible to

detect cycles with DFS algorithms such as Tarjan’s algorithm [16] at compile-

time and ask programmers to fix. However, the cost of detection depends on the300

scale of programs and the strategy of module loading in the language. It might

be realistic only if the signal networks are closed within the same module; al-

lowing using signals among modules might make compilation complicated. This

is also one of the reasons why we limit the declaration to fields in our prototype

implementation.305

4. PuPPy

This idea we proposed in Section 3 can be applied on variables and functions,

but we limit the application to fields and methods to make the design clearer

and simpler in an imperative object-oriented language. We implemented PuPPy

as an extension to the Python language to show the feasibility of our idea.310

Fields on objects can be declared with the push and pull statements, which

are normal declaration with the modifiers prepended. Note that the reason

why we implemented it on Python rather than on our previous implementation,

ReactiveDominoJ [6], is to show the proposed mechanism can be directly built

on top of Python.315

4.1. A quick overview

We implemented PuPPy as an extension to the Python [7] language to

demonstrate our idea. PuPPy adds two new keywords to Python, pupush and

pupull, to support the push-pull automation mechanism for objects. They stand

for ”PuPPy push” and ”PuPPy pull”, respectively. Here we chose them rather320

than just push and pull since the terms push and pull might be too popular to

be reserved keywords—they are frequently used in the implementation of data

14

structure such as stacks and queues1. Since there is no explicit field declaration

in Python, we simply add two kinds of statements that can be used to define

fields in a class:325

(’pupush’ | ’pupull’) ⟨field assignment⟩

⟨field assignment⟩ is a normal statement in Python for defining fields in a class.

For example, defining a field dis with pupush in the definition of class Point,

which represents a point on an orthogonal coordinate plane:

1 c l a s s Po in t :330

2 :
3 x = 0
4 y = 0
5 pupush d i s = math . s q r t (x ∗∗ 2 + y ∗∗ 2)
6 :335

The field dis is the distance from the origin. Although here the values of x and

y are 0 at the timing of defining dis, the definition of dis is similar to a signal

assignment. Whenever the value of x or y is set, the value of dis will be updated

automatically. Note that x and y are fields in the same class; the fields on other

objects are not taken into account. In some sense, it helps programmers to340

prevent the definition of dis from being evaluated immediately in imperative

programming. Note that if there are two occurrences of assignment for the

same field in a class, the definition will be updated after the later assignment

is interpreted according to the semantics of Python. However, in PuPPy this

case is ignored to simplify the implementation. We assume that in a usual345

object-oriented design such a case is rarely used. Similarly, pupull can be used

to define the field dis. The only difference in looks is the keyword prepended to

the definition of dis, but their evaluation strategies are different. In the case of

pupull, the value of dis will only be updated when it is really fetched somewhere,

i.e. when the value of dis is read in the evaluation of an expression. For example,350

when a statement that prints out the value of dis:

p r i n t (s e l f . d i s)

1In fact, we also encountered compilation problem in modifying CPython implementation

if we simply use push and pull.

15

is executed, the expression assigned to dis will be evaluated again to return the

latest value. In this example, the pull statement looks much meaningful since

usually we do not want to evaluate dis twice for a movement: one for x and one355

for y. With the pull statement, we can always get the latest value of dis but avoid

evaluating it several times. Although the push statement looks like useless in

this example, it still plays an important role in imperative programming. Since

we often use side effects in methods, there might be some statements that must

be executed for the value changes. Suppose that in the expression assigned360

to the field, some side effects such as logging should not be skipped, then we

have to use pupush instead of pupull to ensure every propagation will be done

gradually and steadily.

4.2. The push and pull statements

The push statement is a statement that defines fields in a class, just like other365

assignments used to define class members. Writing a push statement outside

of class definition is not allowed. An expression can be declared with pupush

in the class definition to let the expression be reevaluated every time when the

fields read in it are set. The syntax of the push statement is shown as follows:

’pupush’ ⟨field⟩ ’=’ ⟨expression⟩370

It begins with the keyword ’pupush’ and looks like normal assignments. ⟨field⟩

is the field to be declared in the enclosing class, and ⟨expression⟩ is the expres-

sion assigned to the field. Unlike a normal assignment, what we assign to the

field is the expression itself rather than the evaluation result of the expression.

Although in imperative programming it is not possible to really postpone the375

evaluation, the push statement lets the expression be reevaluated every time

when the fields read in it are set. In other words, it is not really a lazy evalu-

ation but forces the expression to be reevaluated when we expect the result of

reevaluation might be different. A handler for executing the assignment again

is created and bound to the setting events of the fields used in the evaluation.380

The setting event for a field refers to the event which will be triggered when

the value of the field is set. PuPPy only infers the fields at the right-hand side

16

that are declared in the enclosing class. It means the scope of propagating value

changes for a push/pull satement is lexically defined.

Alternatively, a field can be defined with pupull in the class definition to385

ensure the field will be up-to-date when it is used. The syntax of the pull

statement is similar to the one of the push statement, but it begins with a

different keyword:

’pupull’ ⟨field⟩ ’=’ ⟨expression⟩

It also creates a handler for executing the assignment again, but binds the han-390

dler to the getting event of this field. The getting events for a field is the event

that will be triggered when the value of the field is got. It means that the ex-

pression assigned to the field will be reevaluated only when the value of this field

is fetched. Thus, any of the setting events for the fields used in the expression

will not cause the reevaluation. Even though any change that might result in395

a different value for the evaluation of this expression is made, the handler will

not be executed.

4.3. The implementation of PuPPy

The implementation of PuPPy2 is based on CPython [17], the reference im-

plementation of the Python programming language. It is an interpreter written400

in C. We added the push and pull statements to Python’s grammar to support

the push-pull automation mechanism.

Our approach to implementing PuPPy is basically a source-to-source trans-

formation. PuPPy interpreter extends CPython to accept the push and pull

statements, transforms them to plain Python code, and leaves code generation405

to CPython. The transformation is based on the idea of getter and setter in

object-oriented design, which benefits from a built-in function named the prop-

erty function [18] and the decorators proposed in PEP (Python Enhancement

Proposal) 318 [19]. PuPPy transforms the code of class definition in which the

push statement or the pull statement is used. The read and write access to410

2It is available on our project page: http://psl.csie.ncu.edu.tw/puppy.

17

these fields are properly replaced with the access to the corresponding getters

and setters.

5. Evaluation

In this section, we use several metrics to evaluate our prototype implemen-

tation. We conduct preliminary microbenchmarks to observe the performance415

overheads of transformed code. In order to reveal the benefits and drawbacks

of using PuPPy, we then analyze typical usage of signals and events in sev-

eral related designs for comparison. Note that we compare with signal class

libraries and event systems rather than functional-reactive design since PuPPy

is targeted at bringing signals to imperative object-oriented design.420

5.1. Preliminary microbenchmarks

We show the result of conducting several kinds of preliminary microbench-

marks for measuring the performance overheads caused by our PuPPy exten-

sion. Note that there might be different approaches to implementing PuPPy

and what we measured here is the performance of our prototype implementa-425

tion. The version of CPython where we applied our PuPPy implementation is

Python 3.7.0a2+3, and configured with --enable-optimizations option. We ran

all the preliminary microbenchmarks on both two platforms.

First, to ensure PuPPy does not affect the performance of the code without

any push or pull statement, we prepare a class named Point containing the430

following assignment:

d i s = math . s q r t (x ∗∗ 2 + y ∗∗ 2)

where x and y are the other two fields in the class. We measured the performance

of accessing the field dis in an object of Point by the timeit method in timeit

module:435

timeit.timeit(’p.dis’, setup=’from plane import Point; p=Point(3, 4)’, number=1000000)

3The CPython implementation is on https://github.com/python/cpython.git,

commit 4eaf7f949069882e385f2297c9e70031caf9144c.

18

Table 2: The execution time of (i) getting the value in a field and (ii) calling a method.

(i) getting the value in a field (ii) calling a method

CPython PuPPy push pull event push pull

Platform Aa 40.56 40.26 39.96 763.73 653.94 537.89 172.31

Platform Bb 36.49 36.43 35.07 742.83 602.14 493.39 154.12

in milliseconds

amacOS High Sierra 10.13.4 with Intel Core i5 2.9GHz
bCentOS 6.9 with Intel Xeon E5-2620 v4 2.1GHz * 2

where the plane is the module containing the Point class. The function timeit is

a simple way provided by the standard library in Python to time small bits of

code, which avoids a number of common traps for measuring execution time [20].

It instantiates an object of Point and then gets its dis one million times. The440

results of running with the plain CPython interpreter and our PuPPy interpreter

are shown in Table 2(i), marked with CPython and PuPPy, respectively. The

result shows that on both platforms the two interpreters have same performance

since our PuPPy interpreter does nothing for the code without the push and

pull statements.445

The next scenario we want to evaluate is the misuse of the push or pull

declaration. When programmers use the push and pull statements in an un-

necessary scenario, it might cause unexpected overheads of performance. Our

PuPPy extension creates property attributes according to the statements pu-

push and pupull, even though the fields are never used as signals. For example,450

in the Point class mentioned above we insert pupull in front of the assignment

of dis, but actually the values of the fields x and y never change. In this case,

just retrieving dis as a normal field should be required, but the transformation

introduces the overheads of accessing property attributes and reevaluating the

expression. On the other hand, using pupush in this case also results in unneces-455

sary transformation, but retrieving dis should cause no performance overheads.

The result of running them by our PuPPy interpreter are respectively marked

with push and pull in Table 2(i), which shows that the cost of running the pull

19

statement is about twenty times higher than the push statement.

The third one is to compare with using events in the same scenario. To460

see the overheads caused by making a field up-to-date, we use plain Python to

implement the most basic event functionality in C# and measure the execution

time of updating a field4. We write a Circle class with such a naive event

mechanism, in which a field named area will be automatically calculated when

the other field r is set. To see the overheads due to making area up-to-date, we465

instantiate an object of Circle and measure the execution time of setR:

timeit.timeit(’c.setR(6)’, setup=’from use evt import Circle; c=Circle(5)’, number=1000000)

where the use evt is the module that contains the Circle class. The same behavior

can be rewritten in PuPPy by simply defining the field area with pupush. The

execution time of using events and the push statement are shown in Table 2(ii),470

marked with event and push, respectively. It is not surprising that the push

version ran faster than the event version since it does not need to instantiate

an event and iterate its handlers. The pull version is listed for comparison; it

actually does nothing else but sets the value.

5.2. Compare with signal class libraries475

In order to discuss the difference between PuPPy and signal class libraries,

we list the essential elements and operations that are necessary for supporting

signals, and then use them to compare PuPPy with three different kinds of

signal class libraries.

5.2.1. Essential elements and operations for signals480

As we discussed in Section 2, the elements in a typical signal class library

include at least signals and normal variables. In addition, some signal class

libraries introduce yet another special kind of variables between signals and

4How the simple event system is implemented and other details of the pre-

liminary microbenchmarks can be found in the downloads on our project page:

http://psl.csie.ncu.edu.tw/puppy#downloads.

20

Table 3: The construction and the conversion of the essential elements for supporting signals.

elements construction to signals to source signals to normal variables

signals signal assignment — — lifting down

source signals source construction — — lifting down

normal variables variable definition lifting up lifting up —

normal variables. Such a special kind of variables are similar to signals, but

they are only used for holding values rather than expressions. They are used485

in the expression of a signal assignment to explicitly specify source nodes in

the propagation. Unlike normal variables, they will not be evaluated to values

immediately in signal assignments. For example, in Scala.React [4] and REScala

they are created by Val and Var, respectively. In order to clarify the discussion,

below we use source signals to refer to such a special kind of variables since they490

can only be used as source nodes in the propagation. On the other hand, normal

signals can be used as both source nodes and sink nodes. It means that normal

signals can be assigned an expression, and can also be used in the expression of

another signal assignment.

As to the operations, we can consider the construction of these essential495

elements and the conversion among them as shown in Table 3. Note that the

API functions for handling signals are not included in this table since here only

the elements and conversion at language-level are listed. However, as one of

the advantages of the class library approach, providing a rich set of functions

at library-level for composing signals is also an important point; we leave the500

discussion to the next section. Note that signal class libraries need a way that

is different from the signal assignment to construct source signals since source

signals cannot be assigned an expression for being sink nodes. Also, signal class

libraries may allow programmers to change the value inside source signals or

not, depending on their design. As to the conversion among these essential505

elements, since source signals are kinds of signals, there are no difference in

lifting up/down signals and source signals to normal variables.

21

REScala [11] supports signals with a dedicated class5 named Signal. Fur-

thermore, an additional class Var is given for explicitly specifying source nodes

in signal assignment. On the contrary, PuPPy implicitly infers source nodes in510

a push/pull statement, and does not give a special kind of variables. As a conse-

quence, in PuPPy the effective scope of a signal is limited to the enclosing class,

while in REScala it is determined by the scope of the special kind of variables.

Flapjax [9] also provides a class library for signals, but is slightly different

from REScala. The signals supported in Flapjax is called Behavior, following515

the naming in Fran[5]. Unlike REScala, Flapjax does not provide source signals

and supports only signals and normal variables. Therefore, programmers cannot

construct a signal whose value can be manually altered as in REScala. A signal

can be constructed by calling functions given by the library, for example to

construct a signal from the property of an HTML element by extractValueB.520

It can be considered as lifting up a normal value. In Flapjax, all expressions

whose values depends on a signal also become signals, so programmers can

further construct others by using signals in the assignments. On the other

hand, programmers can use functions like insertValueB to lift down a signal to

the property of an HTML element. Basically, all signals are implicitly used525

along with normal variables in the world of Flapjax, but they need explicit

lifting up/down in order to interact with the outside, which can be done by

calling functions given by the library. On the other hand, PuPPy even does

not support any abstraction for signals and events, and only focuses on the

propagation of value change in fields of a class.530

SignalJ [15] is a simple extension of Java, which integrates signals with events

by regarding events as signal updates. In SignalJ, variables can be declared

as signals by prepending the signal modifier, and the usage of signals are the

same as normal variables. Although here we discuss SignalJ along with other

class libraries, there is no need to explicitly construct source signals and lift535

5Strictly speaking, it is implemented with traits in Scala, but here we simply use the term

”class” for the abstraction of class-level composition.

22

Table 4: The comparison of the four extensions for supporting signals.

REScala Flapjax SignalJ PuPPy

signal assignment Signal{} normal assignment signal pupush/pupull

source construction Var() — — —

lifting up Var() extractValueB(), etc. — —

lifting down now insertValueB(), etc. — —

up/down between variables and signals. The annotation approach in SignalJ

hides the class library from programmers, but allows signals to accept some

specific operators as invoking methods on objects, for example the subscribe

operator. Every variable declared with signal are signals, which pulls value

changes from its source signals in the assignment. The value change of a signal540

is considered as an event, and allowing to bind handlers with the subscribe

operator for providing side effects. Both SignalJ and PuPPy use modifiers

to distinguish signals from normal variables, but the way of event handling is

different. The handlers in PuPPy are automatically created according to the

assignment, while the ones in SignalJ can be arbitrarily specified with operators.545

As to the operators for event composition in SignalJ, we discuss along with

REScala in the next subsection.

In PuPPy source nodes in a signal assignment are inferred automatically, so

that there is no need to specify with something like Var. However, since PuPPy

uses the modifiers to specify signal assignments, programmers need to explicitly550

add pupush or pupull at the beginning of the assignment. The comparison of

the four extensions for supporting signals is summarized as Table 4. In PuPPy

there are only normal variables, and it is the modifiers to let some of them

work as signals in a specific scope. The benefit is that programmers can use

normal variables as signals without any lifting up and lifting down. This avoids555

introducing types for signals and simplifies the language semantics [15] as in

SignalJ. On the contrary, as a result of the lack of a dedicated abstraction for

signals, the signals in PuPPy cannot be passed to another objects. PuPPy is

close to SignalJ on the design of modifiers, but PuPPy supports push-based

evaluation in addition to pull-based evaluation to distinguish between events560

23

1 val s = Var[Int](0)
2 val s MAP: Signal[String] = s map ((x: Int) => x.toString)
3 val o1 = s MAP observe ((x: String) => println(s”Here: $x”))
4

5 val e = Evt[Int]()
6 val e MAP: Event[String] = e map ((x: Int) => x.toString)
7 val o1 = e MAP observe ((x: String) => println(s”Here: $x”))

(a)

1 import puppy as p
2 s = 0
3 pupush s MAP = p.map(s, lambda x : str(x))
4 pupush o1 = p.map(s MAP, lambda x : print(f”Here: {x}”))

(b)

Figure 8: The map example in REScala (a) and in PuPPy (b).

and signals. On the other hand, SignalJ allows to construct signal networks in

both static and dynamic ways, but PuPPy cannot provide dynamic construction

due to its simple semantics and limited scope.

5.2.2. Operators for composing signals

The operators for using signals play an important role in signal class libraries.565

REScala provides a rich set of combinators such as map and fold for composing

signals and events, while SignalJ provides operators like subscribe for registering

handlers to the events occurring on signals. Here we show how we can implement

these operators in PuPPy. As shown in Line 2 of Figure 8(a), map function in

REScala applies a function to the value carried by the signal s to generate570

another signal s MAP. Then in Line 3 the operator observe is used to attach a

handler; Line 5–7 show the same operation on events. In PuPPy, we can simply

implement such a map function in a module:

1 def map(v , f) :
2 return f (v)575

Then importing that module, here puppy, and using it along with the lambda

expression in Python as shown in Line 2 of Figure 8(b). For such a usage of the

observe operator, which is similar to registering a handler to the events occurring

24

1 val e = Evt[Int]()
2 val f = (x:Int,y:Int)=>(x+y)
3 val s: Signal[Int] = e.fold(10)(f)

(a)

1 e = 0
2 p = puppy.PuPPy(10)
3 pupush s = p.fold(e, lambda x, y : x + y)

(b)

Figure 9: The fold example in REScala (a) and in PuPPy (b).

Table 5: Rewriting the examples of REScala combinators with PuPPy.

combinators from to rewritable? accumulation?

latest event signal yes —

changed signal event yes —

map signal/event signal/event yes no

fold event signal yes yes

or event event no —

and event event no —

count event signal yes yes

last(n) event signal yes yes

list event signal yes yes

latestOption event signal — —

fold Match event event yes no

iterate event signal yes yes

change signal event yes yes

changedTo signal event no —

flatten signal event no —

on signals by the subscribe operator in SignalJ, we can use map function instead.

Figure 9(a) shows the usage of fold function in REScala, which creates a signal580

by folding events with a given function. In Line 3, a function f that sums up

the values associated to the event is given along with an initial value 10. Since

PuPPy does not implement signals with classes, we need an accumulator to

store the previous value of the signal s. We can implement a class to hold the

acc field and the fold function:585

1 def fo l d (s e l f , v , f) :
2 s e l f . acc = f (s e l f . acc , v)
3 return s e l f . acc

As shown in Figure 9(b), an object instance p of such a class for accumulation

is instantiated with the initial value 10 and used to fold the values in e to590

s. Table 5 lists the combinators explained in REScala manual [11]. For every

25

combinator, we write down the elements it converts between in from and to, and

mark yes in rewritable? if the example of which can be rewritten in PuPPy6.

The accumulation? indicates whether the function needs an accumulator or not;

if yes, we need an object to hold the accumulated value as what we showed595

for the fold combinator; otherwise, its implementation can be a global function

as the map combinator. Note that latest and changed are just assigning values

between a field and another field declared with pupush since PuPPy unifies

signals and events; therefore, no function is necessary. For others, basically we

can rewrite them by storing its past value or accumulated value in an object and600

applying a lambda expression for conversion as in REScala. However, generally

speaking, the way of associating the object for holding past values with a signal

itself in REScala is better since it hides the objects from programmers. For the

combinators or and flatten, similarly the or operator in SignalJ, which detect the

occurrences of one among multiple events, we failed to rewrite since in PuPPy605

it is not able to exactly know which source signal triggers and get the value

carried by it. For example, in our version of or combinator7:

pupush e1 OR e2 = p . e o r (e1 , e2)

here we expect e1 OR e2 must be set to the value of e1 or e2, depending on

which one is triggered. However, PuPPy provides no mechanism to exactly610

know which one is triggered. A workaround is to hold the previous values of e1

and e2 in the object instance p and returning the one that is different from its

previous value, but it does not work when e1 or e2 is triggered again with the

same value—we have no idea whether the value of e1 or the value of e2 should

be returned. For the combinators such as and and changedTo in REScala and615

the when operator in SignalJ that take a predicate to decide triggering or not,

we cannot rewrite them in PuPPy either since the sink signal will always be

reevaluated no matter whether the predicate is true or not. In the following

6The code examples of implementing these combinators with PuPPy are available on the

downloads of our project page: http://psl.csie.ncu.edu.tw/puppy#downloads.
7Since or/and are reserved keywords in Python, we use the names e or/e and instead.

26

example,

pupush e AND = p . e and (e , lambda x : x > 10)620

whenever e is triggered, the value of e AND will be set even though x is not

greater than 10. We can store the value of x in the object instance p when

the predicate is true, and use it to set e AND again when the predicate is false.

It might not be a significant problem except that it will wastefully calculate.

However, we cannot stop executing the handlers bound to e AND unless PuPPy625

allows to cancel event triggering. As to latestOption, it is a variant of latest

function for the Option in Scala, so we ignore the implementation in Python.

Another interesting difference is that in PuPPy we cannot assign values to

other fields except the sink signal since the lambda expression in Python does

not allow to use assignments as a side effect8. For example, in REScala we can630

assign x to test:

va l f = (x : I n t)=>{ t e s t=x ; x+1}
va l s : S i g n a l [I n t] = e . i t e r a t e (10) (f)

where iterate returns a signal that holds the value computed by f on the oc-

currence of the event e, and assigning the value to test in f can be regarded as635

kinds of side effects. To rewrite it in PuPPy, we have to move the assignment

to another lambda expression and apply to test separately:

pupush t e s t = p . i t e r a t e (e , lambda x : x)
pupush s = p . i t e r a t e (e , lambda x : x + 1)

In other words, we can only set the value inside the sink signal in the functions640

given to combinators or observe. Furthermore, even if the value of a source signal

is not used in the lambda expression, we still have to leave it in the right-hand

side. For example, the following line in REScala:

e observe { => println(”hello”) }

should be rewritten to:645

pupush s = p .map(e , lambda x : p r i n t (” h e l l o ”))

8Python is going to support assigning to variables within an expression[21], then it might

be possible to provide side effects inside lambda expressions.

27

Unless e is specified at the right-hand side, PuPPy has no idea how to trigger this

reevaluation. Note that here map is a global function; in the case that observe

needs an accumulator, we have to use map on an object instance instead.

5.3. Compare with pure event systems650

For a pure event system, undoubtedly there are two essential elements:

events and handlers, so the system must support operations on defining events

and handlers. Furthermore, it needs to provide mechanisms for binding han-

dlers to events and triggering events. Note that events are mainly defined for

being triggered rather than holding values. In the design of most event systems,655

events can only temporarily carry values when they are triggered; they cannot

be evaluated as normal variables.

EScala is based on Scala and provides rich event support, and we have

shown how to construct events by evt and bind normal methods as its handlers

in Section 2. Due to the lack of dedicated support for specify setting events,660

in order to propagate the value change of a field declared with var9 in Scala,

we have to prepare a setter method and declare an event on that method by

afterExec. We may also declare ea as an imperative event for being triggered

by calls. However, neither of the ways to declare the event ea is as implicit as

signals. Another interesting point is that events do not hold values. Although665

events are declared with a type, it is used to define the type of the value used

in event trigger. We cannot directly operate on the value of an event since it

does not carry the value until being triggered.

C# supports imperative events and handlers by the keyword event and dele-

gate, respectively. To implement a signal-like field, we can use delegate to define670

the type of handlers and then use event to declare events along with the handler

type. As to the binding, it can be done by operators as in EScala. However,

unlike in EScala, the event trigger in C# can only be imperative. A notable

9Note that in Scala var is for mutable variables while val is for immutable ones. Unlike in

REScala we assign an object to a val, here we choose var to change the value in it later.

28

Table 6: The difference between ReactiveDominoJ and PuPPy.

ReactiveDominoJ PuPPy

direction of trigger one-way (push) two-way (push and pull)

how to enable automation dynamic declarative

scope of specifying automation multiple statements single statement

scope of inferring fields cross objects within objects

difference is that C# provides the ?. operator to conveniently ensure that we

do not want to trigger the event without any handler bound to it. Using events675

in C# to implement signal-like field has the same drawbacks as using the ones

in EScala.

On the other hand, in PuPPy, programmers can simply prepend the keyword

pupush before the assignment to let a field be updated when the value it depends

is changed. Unlike other pure event systems, there is no need to explicitly define680

the setting event and the handler. It also means that programmers do not have

to worry about the relation between the field, the event, the handler, and the

binding. Moreover, the type in PuPPy is hidden from programmers. As a

consequence, there is no way to arbitrarily define events and bind handlers;

event handling is implicitly processed for propagating value changes of fields685

only. For this reason, in PuPPy there is no additional expression such as e()

and e?.Invoke() to trigger events except updating values in fields.

5.4. Compare with ReactiveDominoJ

As discussed in Section 3, the original automation mechanism can be mapped

to the push declaration in the push-pull automation mechanism. Since PuPPy690

supports the push-pull automation, it provides the pull statement that is not

available in ReactiveDominoJ, the implementation for the original automation

mechanism. Furthermore, how to enable the automation is quite different. Re-

activeDominoJ is more dynamic and flexible, while PuPPy is much simple and

declarative; PuPPy even hides events and handlers from programmers. In addi-695

tion, the scope of specifying the automation and applying the inference is also

different. These differences are summarized in Table 6.

29

! "#

$%&& $%'(

')%*+,'-./

(a)

!

"

#

$%&&

$%'(

)

$%'(

'*%+",

'-./

'-./

(b)

Figure 10: Two possible scenarios of mixing push and pull.

5.5. The advantage of hybrid push/pull design

A hybrid push/pull design lets programmers to choose between push and

pull to fit their needs. Suppose that we have a device that periodically updates700

its value. For its GUI client, we can decide to update the graph immediately

or allowing users to set the refresh interval. Furthermore, such a design also

makes it possible to mix the usage of push and pull. As shown in Figure 10(a),

we might hope a signal value from the device d can be steadily recorded by

a file f, while the GUI client g can still refresh the graph at its own pace. It705

might be useful when we want to log every change from the device d in the

file f, but avoiding frequently refreshing the drawing on g. Using push for both

f and g will make every change in d propagated to g immediately. Another

possible scenario is shown in Figure 10(b), where another client c needs to be

continuously updated. In a system that supports only push or pull, it is not710

able to allow detailed configuration.

6. Related Work

The signals, also known as behaviors, play the major role in functional-

reactive programming [5, 22, 23, 24, 25] and its abstraction heavily relies on

functions. When porting the signal to the world of imperative object-oriented715

programming, library developers tend to wrap it up in a class as how they

do for higher-order functions. Several projects are devoted to provide frame-

works [8, 9, 26, 11, 27, 28] that support using functional-reactive programming

30

along with imperative object-oriented design. Usually they develop a complete

and powerful framework that supports signals along with event streams and720

gives a lot of functions for conversion between signals, event streams, and nor-

mal variables. Although programmers need to introduce a whole framework

to benefit from signals, they can quickly enter the world of functional-reactive

programming and start using signals with library function calls. On the other

hand, several research such as active expressions [29] provide a mechanism to725

build signals by writing expressions. In both two designs, the boundary between

time-varying values and fixed values is very obvious. The class for signals holds

time-varying values, while normal variables store fixed values. Function calls

and signal construction are the boundary between signals and normal variables.

Although we can directly give signals to functions provided in the framework,730

we need to lift signals down to normal variables before giving to other functions.

It might be helpful to the design of a complicated system, while being too heavy

for a small system.

On the other hand, several research activities are devoted to developing a

dedicated abstraction or even a new language for functional-reactive program-735

ming, for example FrTime [30] and KScript [31]. They construct the language

with better support for functional-reactive programming, and make program-

ming further declarative and seamless. Since these languages directly support

functional-reactive programming, the semantics of them are based on functional

programming. To an existing system with imperative object-oriented design, it740

is too expensive to migrate. SuperGlue [32] is one of the approaches to inte-

grating signals with imperative object-oriented design. Such design limits the

usage of signals to a smaller scope, for example being the properties of compo-

nents. It lets programmers to implement an imperative object-oriented design

but still benefit from signals. However, it can also be classified as the approach745

of proposing a new language.

The push and pull model has been mentioned by Elliott [14] to discuss data-

driven and demand-driven evaluation in the implementation in the context of

functional-reactive programming. It is also discussed in the event-based system

31

such as ReactiveX [33] in the context of imperative object-oriented program-750

ming. It turns out that the two styles are useful in different scenarios and

the performance might be affected by their usage [34, 15]. There are also re-

search activities discussing distributed states handling [35]. By comparing the

discussion in functional-reactive programming and imperative object-oriented

programming, we can know that the push style is the basics of events while755

the pull style has the flavor of signals. We discussed the push and pull styles

on our previous research result [6], and extended the automation mechanism to

support both the two styles.

Since side effects are frequently used in imperative programming, how to

limit the scope of read/write access is important. There are a lot of discussion760

on how to make programmers’ intention clear and how to improve the encapsu-

lation, and various support such as design patterns, class libraries, and language

constructs are developed. The Observer pattern, one of the most famous pat-

terns [1], can loose the coupling between objects. However, it is difficult to group

pattern code and ensure the relation between the fields and methods in patterns.765

Several researchers suggested replacing them with dedicated abstraction [4, 36]

or extracting them to one place for reuse [3]. The signals and slots [37] supported

in Qt’s meta-object system can also be regarded as an approach to eliminating

code for implementing patterns. The getter-setter design is another example,

which is encouraged in the domain of imperative object-oriented programming770

and has almost become a guideline of development in industry. However, it

results in a lot of annoying code, and how to ensure the consistency among the

field, the getter, and the setter is an issue. The property in C# is a solution

to clearly declarative getters and setters. On the other hand, recently there are

several imperative programming languages supporting functions with a library775

class [38] or a dedicated abstraction [39] in order to provide the flavor of func-

tional programming. They let programmers to limit the scope of side effects

and clarify their intention. These support help programmers to announce their

intention declaratively, and thus undesired writing can be prevented. The push-

pull automation mechanism might also be classified under such kind of support780

32

to imperative programming.

7. Conclusion

Both events and signals can be regarded as a mechanism to propagate value

changes of variables; events are explicit while signals are implicit. We pointed

out that both a series of events and signals can be considered as a process785

of propagating value changes from source to sink. Although the direction of

propagation is fixed, the direction of trigger can be either push or pull. We

analyzed why in existing systems it is necessary to distinguish between signals,

source signals, and normal variables and then proposed a lightweight push-pull

automation mechanism that helps programmers to implicitly use signals. The790

intention of using signals can be clarified by declaring with push or pull. The

push-pull automation can be applied on variables and functions, but we fo-

cused on object-oriented design in our prototype implementation, PuPPy. As

an extension to the Python language, PuPPy provides a solution to simply use

variables as signals. We ran preliminary microbenchmarks for our prototype795

implementation, and the result shows that this extension does not impose sig-

nificant overheads on the runtime. We discussed the essential elements and

operations in signal class libraries and pure event systems, and used them to

compare PuPPy with several representative designs. It shows that PuPPy is

lightweight and has a simpler design devoted to value changes.800

Acknowledgments

This research is supported by the Ministry of Science and Technology (Tai-

wan) as part of the project ”Providing better abstraction and modular support

at language-level for applications in scientific computing domain” [MOST 105-

2218-E-008-016-MY2].805

33

References

[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns, Addison-

Wesley, 1994.

[2] E. W. Dijkstra, Selected Writings on Computing: A Personal Perspective,

Springer-Verlag New York, Inc., New York, NY, USA, 1982.810

[3] J. Hannemann, G. Kiczales, Design pattern implementation in Java

and AspectJ, in: Proceedings of the 17th ACM SIGPLAN confer-

ence on Object-oriented programming, systems, languages, and appli-

cations, OOPSLA’02, ACM, New York, NY, USA, 2002, pp. 161–173.

doi:http://doi.acm.org/10.1145/582419.582436.815

[4] I. Maier, M. Odersky, Deprecating the Observer Pattern with Scala.react,

Tech. rep. (2012).

[5] C. Elliott, P. Hudak, Functional reactive animation, ICFP’97, ACM, 1997,

pp. 263–273. doi:10.1145/258948.258973.

[6] Y. Zhuang, S. Chiba, Expanding event systems to support signals by en-820

abling the automation of handler bindings, Journal of Information Process-

ing 24 (4) (2016) 620–634. doi:10.2197/ipsjjip.24.620.

[7] Python Software Foundation, The python programming language,

https://www.python.org/.

[8] A. Courtney, Frappé: Functional reactive programming in Java, PADL’01,825

Springer-Verlag, 2001, pp. 29–44.

[9] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Green-

berg, A. Bromfield, S. Krishnamurthi, Flapjax: a programming lan-

guage for Ajax applications, OOPSLA’09, ACM, 2009, pp. 1–20.

doi:10.1145/1640089.1640091.830

34

[10] G. Salvaneschi, G. Hintz, M. Mezini, REScala: Bridging between object-

oriented and functional style in reactive applications, Modularity’14, ACM

Press, 2014.

[11] Software Technology Group, TU Darmstadt, Rescala manual,

http://www.rescala-lang.com/manual/.835

[12] V. Gasiunas, L. Satabin, M. Mezini, A. Núñez, J. Noyé, EScala: modular

event-driven object interactions in Scala, AOSD’11, ACM, 2011, pp. 227–

240. doi:http://doi.acm.org/10.1145/1960275.1960303.

[13] Y. Zhuang, S. Chiba, Enabling the automation of handler bindings

in event-driven programming, in: 2015 IEEE 39th Annual Computer840

Software and Applications Conference, Vol. 2, 2015, pp. 137–146.

doi:10.1109/COMPSAC.2015.48.

[14] C. M. Elliott, Push-pull functional reactive programming, in: Proceedings

of the 2Nd ACM SIGPLAN Symposium on Haskell, Haskell ’09, ACM, New

York, NY, USA, 2009, pp. 25–36. doi:10.1145/1596638.1596643.845

[15] T. Kamina, T. Aotani, Harmonizing signals and events with a

lightweight extension to java, Programming Journal 2 (3) (2018) 5.

doi:10.22152/programming-journal.org/2018/2/5.

[16] R. Tarjan, Depth first search and linear graph algorithms, SIAM JOUR-

NAL ON COMPUTING 1 (2).850

[17] Python Software Foundation, CPython on GitHub,

https://github.com/python/cpython.

[18] Python Software Foundation, Built-in Function ― property(),

https://docs.python.org/3/library/functions.html#property.

[19] Python Software Foundation, PEP 318 – Decorators for Functions and855

Methods, https://www.python.org/dev/peps/pep-0318/.

35

[20] Python Software Foundation, timeit ― Measure execution time of small

code snippets, https://docs.python.org/3.7/library/timeit.html.

[21] Python Software Foundation, PEP 572 – Assignment Expressions,

https://www.python.org/dev/peps/pep-0572/.860

[22] Z. Wan, P. Hudak, Functional reactive programming from first principles,

PLDI’00, ACM, 2000, pp. 242–252. doi:10.1145/349299.349331.

[23] Z. Wan, W. Taha, P. Hudak, Real-time FRP, ICFP’01, ACM, 2001, pp.

146–156. doi:10.1145/507635.507654.

[24] H. Nilsson, A. Courtney, J. Peterson, Functional reactive pro-865

gramming, continued, Haskell’02, ACM, 2002, pp. 51–64.

doi:10.1145/581690.581695.

[25] Z. Wan, W. Taha, P. Hudak, Event-driven FRP, PADL’02, Springer-Verlag,

2002, pp. 155–172.

[26] I. Maier, M. Odersky, Higher-order reactive programming with in-870

cremental lists, ECOOP’13, Springer-Verlag, 2013, pp. 707–731.

doi:10.1007/978-3-642-39038-8_29.

[27] The Sodium Project, Sodium - Functional Reactive Programming (FRP)

Library for multiple languages, https://github.com/SodiumFRP/sodium.

[28] Facebook Inc., React - A JavaScript library for building user interfaces,875

https://reactjs.org.

[29] R. H. Stefan Ramson, Active expressions: Basic building blocks

for reactive programming, Programming Journal 1 (2) (2017) 12.

doi:10.22152/programming-journal.org/2017/1/12.

[30] G. H. Cooper, S. Krishnamurthi, Embedding dynamic dataflow in a call-880

by-value language, ESOP’06, 2006, pp. 294–308.

36

[31] Y. Ohshima, A. Lunzer, B. Freudenberg, T. Kaehler, KScript and

KSWorld: A time-aware and mostly declarative language and in-

teractive GUI framework, Onward! ’13, ACM, 2013, pp. 117–134.

doi:10.1145/2509578.2509590.885

[32] S. McDirmid, W. C. Hsieh, SuperGlue: component programming with

object-oriented signals, ECOOP’06, Springer-Verlag, 2006, pp. 206–229.

doi:10.1007/11785477_15.

[33] ReactiveX, An API for asynchronous programming with observable

streams, http://reactivex.io.890

[34] G. Salvaneschi, M. Mezini, Reactive behavior in object-oriented applica-

tions: an analysis and a research roadmap, AOSD’13, ACM, 2013, pp.

37–48. doi:10.1145/2451436.2451442.

[35] F. Myter, T. Coppieters, C. Scholliers, W. De Meuter, I now pronounce

you reactive and consistent: Handling distributed and replicated state in895

reactive programming, in: Proceedings of the 3rd International Workshop

on Reactive and Event-Based Languages and Systems, REBLS’16, ACM,

New York, NY, USA, 2016, pp. 1–8. doi:10.1145/3001929.3001930.

[36] Y. Zhuang, S. Chiba, Method slots: supporting methods, events, and ad-

vices by a single language construct, AOSD’13, ACM, 2013, pp. 197–208.900

doi:10.1145/2451436.2451460.

[37] The Qt Project, Signals & Slots, http://doc.qt.io/qt-5/signalsandslots.html.

[38] Microsoft Corporation, Func(T, TResult) Delegate (System),

https://msdn.microsoft.com/en-us/library/bb549151(v=vs.110).aspx.

[39] Oracle Corporation, OpenJDK: Project Lambda,905

http://openjdk.java.net/projects/lambda/.

37

