
Method Slots: Supporting Methods, Events, and Advices
by a Single Language Construct

YungYu Zhuang
The University of Tokyo

zhuang@csg.ci.i.u-tokyo.ac.jp

Shigeru Chiba
The University of Tokyo

chiba@acm.org

ABSTRACT
To simplify the constructs that programmers have to learn
for using paradigms, we extend methods to a new language
construct, a method slot, to support both the event-handler
paradigm and the aspect paradigm. A method slot is an ob-
ject’s property that can keep more than one function closure
and be called like a method. We also propose a Java-based
language, DominoJ, which replaces methods in Java with
method slots, and explain the behavior of method slots and
the operators. Then we evaluate the coverage of expressive
ability of method slots by comparing DominoJ with other
languages in detail. The feasibility of method slots is shown
as well by implementing a prototype compiler and running
a preliminary microbenchmark for it.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features

Keywords
aspect-oriented programming; event-driven programming

1. INTRODUCTION
The event-handler paradigm has been recognized as a use-

ful mechanism in a number of domains such as user inter-
face, embedded systems, databases [32], and distributed pro-
gramming. The basic idea of the event-handler paradigm is
to register an action that is automatically executed when
something happens. At first it was introduced as techniques
and libraries [7, 28, 26] rather than supported at language
level. Recently supporting it at language level is a trend
since a technique such as the Observer pattern [7] cannot
satisfy programmers’ need. The code for event triggers and
observer management scatters everywhere. To address the
issues, supporting events by a language construct is pro-
posed in a number of languages [17, 3, 22, 6, 13, 9]. Implicit

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’13, March 24–29, 2013, Fukuoka, Japan.
Copyright 2013 ACM 978-1-4503-1766-5/13/03 ...$15.00.

invocation languages [8] might be classified into this cate-
gory.

On the other hand, the aspect paradigm [14] is proposed to
resolve crosscutting concerns, which cannot be modularized
by existing paradigms such as object orientation. Although
the aspect paradigm and the event-handler paradigm are
designed for different scenarios, the constructs introduced
for them are similar and can work as each other from a
certain point of view.

In order to simplify the language constructs programmers
have to learn, we borrow the idea of slots from Self [30] to
extend the method paradigm in Java. In Self, everything is
a slot that may contain either a value or a method. In other
words, there is no difference between fields and methods
since a method is also an object and thus can be kept in a
field. We extend the slot and bring it to Java-like languages
by proposing a new language construct named method slot.
A method slot is an object’s property which can keep more
than one closure. We also present a Java-based language
named DominoJ, where all methods in plain Java are re-
placed with method slots, to support both the event-handler
paradigm and the aspect paradigm.

Our contributions presented in this paper are two-fold.
First, we propose a new language construct, amethod slot, to
extend the method paradigm. Second, we introduce method
slots to a Java-based language named DominoJ, and demon-
strate how to use for the event-handler paradigm and the
aspect paradigm.

2. MOTIVATION
With the evolution of software, more and more program-

ming paradigms are developed for various situations. During
programmers’ life, they are always learning new paradigms
and thinking about which ones are most suitable for the job
at hand. For example, the event-handler paradigm is widely
adopted by GUI frameworks [31, 18, 24]. When we write
GUI programs with modern GUI libraries, we usually have
to write a number of handlers for different types of events.
The AWT [24] of Java is a typical example. If we want
to do something for mouse events occurring on a button,
we have to prepare a mouse listener that contains handler
methods for those mouse events, and register the listener
to the specified button object. A GUI program can be re-
garded as a composite of visual components, events, and
handlers. The visual components and handlers are main
logic, and events are used for connecting them. Indeed we
have been familiar with using the event-handler paradigm
for GUI programs, but it is far from our first “hello world”

program. We are told to carefully consider the total exe-
cution order when users’ input is read. If the event-handler
paradigm is used, we can focus on the reaction to users’ input
rather than the order of users’ input. Whether the mouse
is clicked first or not does not matter. Another example is
the aspect paradigm. Aspect-oriented programming is de-
veloped to modularize crosscutting concerns such as logging,
which cannot be modularized by using only object-oriented
programming. With the aspect paradigm, crosscutting con-
cerns can be gathered up in an aspect by advices. At the
same time, programmers cannot check only one place for
understanding the behavior of a method call since advices
in other places are possibly woven together. It also takes
effort to get familiar with the aspect paradigm since it is
quite different from our other programming experience.

To use a paradigm, just learning its concept is not enough.
After programmers got the idea of a paradigm, they still
have to learn new language constructs for the paradigm.
Some paradigms like the aspect paradigm are supported
with dedicated language constructs since the beginning be-
cause they cannot be represented well by existing syntax.
On the other hand, although other paradigms like the event-
handler paradigm have been introduced at library level for
a long time, there are still good reasons for re-introducing
them with direct support at language level [17, 22, 9]. Maybe
one reason is that events are complicated in particular when
we are not users but designers of a library. Besides GUI
libraries, the event-handler paradigm is also implemented
in a number of libraries for several domains such as simple
API for XML [29] and asynchronous socket programming.
Some techniques such as the Observer pattern [7] used in
those libraries cannot satisfy the needs of defining events
and tend to cause code scattering and tangling. Supporting
paradigms by language constructs is a trend since it makes
code more clear and reusable. Furthermore, a language sup-
ported paradigm may have associated static checks.

However, learning language constructs for a paradigm is
never easy, especially for powerful paradigms like the aspect
paradigm. Moreover, the syntax is usually hard to share
with other paradigms. Even though programmers got fa-
miliar with the language constructs for a paradigm, they
still have to learn new ones for another paradigm from the
beginning. Given that all language constructs we need can
be put into a language together, they look too complex and
redundant. How to pick up the best language to implement
a program with all required paradigms is always a difficult
issue. This motivates us to find out an easy, simple, and
generic language construct supporting multiple paradigms.

If we look into the language constructs for the event-
handler paradigm and the aspect paradigm, there is a no-
table similarity between them. Both of them introduce a
way to define the effect of calling specified methods. The
differences are where the reactions are and what the reac-
tions are targeted at. Listing 1 is a piece of code in EScala1

[9], which is a typical event mechanism, showing how to de-
fine a moved event for the setPosition method in the Shape
class. Here we specify that refresh method on a Display ob-
ject should be executed after setPosition method is executed.
As shown in Listing 2, the reaction can also be represented in
AspectJ [25], the most well-known aspect-oriented language.

By comparing the two pieces of code, we can find that

1The syntax follows the example in EScala 0.3 distribution.

Listing 1: Defining a reaction in EScala
1 class Display() {
2 def refresh() {
3 System.out.println("display is refreshed.")
4 }
5 }
6 class Shape(d: Display) {
7 var left = 0; var top = 0
8 def setPosition(x: Int, y: Int) {
9 left = x; top = y

10 }
11 evt moved[Unit] = afterExec(setPosition)
12 moved += d.refresh
13 }
14 object Test {
15 def main(args: Array[String]) {
16 val d = new Display()
17 val s = new Shape(d)
18 s.setPosition(0, 0)
19 }
20 }

Listing 2: Defining a reaction in AspectJ
1 public class Display {
2 public static void refresh() {
3 System.out.println("display is refreshed.");
4 }
5 }
6 public class Shape {
7 private int left = 0; private int top = 0;
8 public void setPosition(int x, int y) {
9 left = x; top = y;

10 }
11 }
12 public aspect UpdateDisplay {
13 after() returning:
14 execution(void Shape.setPosition(int, int)) {
15 Display.refresh();
16 }
17 }
18 public class Test {
19 public static void main(String[] args) {
20 Shape s = new Shape();
21 s.setPosition(0, 0);
22 }
23 }

pointcuts are close to events and advices can work as the +=
operator for handlers. They both refresh the display when
the specified method is executed, but there is a significant
difference between them. In EScala version, one Display ob-
ject is mapped to one Shape object and the refresh action is
performed within the Shape object. On the other hand, in
AspectJ version there is only one Display object in the whole
program and the refresh action is in UpdateDisplay, which
is completely separated from Display and Shape. From the
viewpoint of the event-handler paradigm, such behavior is an
interaction between objects, so the reaction is defined inside
the class and targeted at object instances; the encapsulation
is preserved. From the viewpoint of the aspect paradigm, it
is important to extract the reaction for the obliviousness
since it is a different concern cutting across several classes.
So the reactions are grouped into a separate construct and
targeted at the class. Although the two paradigms are devel-
oped from different points of view, the language constructs
used for them are quite similar. Furthermore, both the two
paradigms depend on the most basic paradigm, the method
paradigm, since both events and pointcuts cause the exe-

�������������	

 �����

��� 	

������� ��
�
void (int nx) -> { this.x = nx; }

| this = s

Figure 1: In JavaScript, both an integer and a func-
tion are fields on an object

�������������	

 �����

��� 	

�����
��� ��
�
void (int nx) -> { target.update(nx); }

| target = o

void (int nx) -> { this.x = nx; }
| this = s

Figure 2: A method slot is an extended field that
can keep more than one function closure

cution of a method-like construct. This observation led us
to extend the method paradigm to support both the event-
handler paradigm and the aspect paradigm. To a program-
mer, there are too many similar language constructs for dif-
ferent paradigms to learn, so we assume that the integration
and simplification are always worth doing.

3. DOMINOJ
We extend methods to a new language construct named

a method slot, to support methods, events, and advices. We
also show our prototype language named DominoJ, which
is a Java-based language supporting method slots and fully
compatible with plain Java.

3.1 Method slots
Although methods and fields are different constructs in

several languages such as C++ and Java, there is no dif-
ference between them in other languages like JavaScript. In
JavaScript, a method on an object (strictly speaking, a func-
tion closure) is kept and used as other fields. Figure 1 shows
a Shape object s, which has two fields: an integer field named
x and a function field named setX. We use the following no-
tation to represent a closure:
<return type> (<parameter list>) -> { <statements> }

| <variable binding list>
where the variable binding list binds non-local variables in
the closure. The value stored in field setX is a function
closure whose return type and parameter type are void and
(int), respectively. The variable this used in the closure is
bound to s given by the execution context. When we query
the field by s.setX, the function closure is returned. When we
call the field by s.setX(10), the function closure is executed.

We extend this field in JavaScript to keep an array of
function closures rather than just one function closure. As
shown in Figure 2, the extended field named a method slot
can keep more than one function closure. DominoJ replaces
a method with a method slot in plain Java. All method-
like declarations and calls are referred to method slots. A
method slot is a closure array and is an object’s property

Listing 3: A sample code in DominoJ
1 public class Shape {
2 private int x;
3 public void setX(int nx) {
4 // default closure
5 this.x = nx;
6 }
7 }
8 public class Observer {
9 private int count;

10 public void update(int i) {
11 this.count++;
12 }
13 public static void main(String[] args) {
14 Shape s = new Shape();
15 Observer o = new Observer();
16 s.setX += o.update;
17 s.setX(10);
18 }
19 }

like a field. Like functions or other fields, method slots are
typed and statically specified when they are declared. The
type of method slot includes its return type and parameter
types. All closures in it must be declared with the same
type.

Listing 3 shows a piece of sample code in DominoJ. It
looks like plain Java, but here setX is a method slot rather
than a method. The syntax of method slot declaration is
shown below:
<modifier>* <return type> <identifier>
“(”<parameter list>? “)”<throws>?
(<default closure> | “;”)

The default closure is similar to the method body in Java
except it is optional. The modifiers can be public, protected,
or private for specifying the visibility of the method slot.
This ensures that the access to the method slot can be con-
trolled as the methods in plain Java. The modifier static
can be specified as well. Such static method slots are kept
on the class objects so can be referred using the class name
like calling the static method in plain Java. The modifier
abstract can also be used to specify that the method slot
should be implemented by the subclasses. A method slot
can be another kind of “abstract” by being declared without
a default closure:

public void setX(int nx);

Unlike the modifier abstract, this declaration means that the
method slot is an empty field and its behavior depends on
the closures added to it later. In Listing 3, the method slot
setX has a default closure, so the following function closure
will be created and inserted into setX automatically when a
Shape object, s, is instantiated:

void (int nx) -> { this.x = nx; }

| this = s

Now there is only one closure in the method slot setX. If we
add another closure to setX, the object may look like the s
object in Figure 2. How to add such a closure to a method
slot will be demonstrated in the next subsection.

A method slot can also be declared with the modifier final
to specify that it cannot be overridden in the subclasses. Al-
though fields are never overridden in either prototype-based

Listing 4: The algorithm of calling a method slot
1 ; call a methodslot
2 (define (call-methodslot object slotname args)
3 (let* ((methodslot (get-field object slotname
4 (get-type args)))
5 (return_type (get-return-type methodslot)))
6 (let execute-closures
7 ((closures (get-closures methodslot))
8 ($retval (cond ((boolean? return_type) #f)
9 ((number? return_type) 0)

10 (else ’()))))
11 (if (null? closures)
12 $retval
13 (let
14 (($retval (execute-a-closure (car closures) args)))
15 (execute-closures (cdr closures) $retval))))))

languages like JavaScript or class-based languages like Java,
method slots can be overridden in subclasses. Declaring a
method slot with the same signature overrides but not hides
the one in the superclass. When a method slot is queried or
called on an object, the overriding method slot is selected
according to the actual type of the object. It is also possi-
ble to access the overridden method slot in the superclass
through the keyword super. Note that method slots must
be declared within a class and cannot be declared as local
variables. Thus the usage of this and super in the default
closure are the same as in a Java method, which refer to the
owning class and its superclass, respectively. Constructors
are method slots as well, and super() is allowed since it calls
the overridden constructor.

When a method slot is called by () operator, the closures
in it are executed in order. The arguments given to the
method slot are also passed to its closures. The return value
returned by the last closure is passed to the caller (if it is
not the void type). A closure can use a keyword $retval to
get the return value returned by the preceding closure in
the method slot. If the closure is the first one in the method
slot, $retval is given by a default value (0, false, or null).
If the method slot is empty, the caller will get the default
value and no exception is thrown. It is reasonable since the
empty state is not abnormal for an array and just means
that nothing should be done for the call at that time. The
behavior of a method slot can be dynamically modified at
runtime, while still statically typed and checked at compile
time. How to call a method slot is described in Scheme as
shown in Listing 4.

3.2 Operators for method slots
DominoJ provides four operators for manipulating the clo-

sures in a method slot: =, ^=, +=, and -=, as shown in Table 1.
These operators are borrowed from C# and EScala, and are
the only different syntax from Java. It is possible to add and
remove a function closure to/from a method slot at runtime.

Their operands at both sides are method slots sharing the
same type. Those operators except -= create a new function
closure calling the method slot at the right-hand side, and
add it to the method slot at the left-hand side. The method
slot called by the function closure will get the same argu-
ments which are given to the method slot owning the func-
tion closure. In other words, a reference to the method slot
at the right-hand side is created and added to the method

Table 1: The four operators for method slots
Operator Description

= add a new function closure and remove the
others from the method slot.

^= insert a new function closure at the begin-
ning of the array.

+= append a new function closure to the end
of the array.

-= remove function closures calling the method
slot at the right-hand side.

slot at the left-hand side. The syntax of using the operators
to bind two method slots is shown below:
<expr>“.”<methodslot>

<operator> <expr>“.”<methodslot>;

where <expr> can be any Java expression returning an ob-
ject, or a class name if the following <methodslot> is static.
When the binding statement is executed at runtime, the
<expr> at both sides will be evaluated according to current
execution context and then given to the operator. In other
words, the <expr> at the right-hand side is also determined
at the time of binding rather than the time of calling. The
object returned by the <expr> at the left-hand side helps
to find out the method slot at the left-hand side, where we
want to add or remove the new function closure. The ob-
ject got by evaluating the <expr> at the right-hand side is
attached to the new function closure as a variable target,
which is given to the new function closure along with the
execution context at the time of calling. For example, the
binding statement in Line 16 of Listing 3 creates a new func-
tion closure calling the method slot update on the object o
by giving target = o, and appends it to the method slot setX
on the object s.

void (int nx) -> { target.update(nx); }

| target = o

Then the status of the s object will be the same as the one
shown in Figure 2. When the slot setX on the object s is
called as Line 17 in Listing 3, the default closure and the slot
update on the object o are sequentially called with the same
argument: 10. Note that all closures in a method slot get
the same execution context, where this refers to the object
owning the method slot, and therefore, the callee method
slot in target must be accessible from the caller method slot
in this. With proper modifiers, a method slot cannot call
and be called without any limitation. The behavior avoids
breaking the encapsulation in object-oriented programming.

The -= operator removes function closures calling the method
slot at the right-hand side from the method slot at the left-
hand side. It is also possible to remove the default closure
from a slot by specifying the same method slots at both
sides:

s.setX -= s.setX;

Operators manipulate the default closure only when the
method slots at both sides are the same one, otherwise op-
erators regard the right-hand side as a closure calling that
method slot. Note that the default closure is never destroyed
even when it is removed. The algorithms of the four opera-
tors are described in Scheme in Listing 5.

Listing 5: The algorithms of the four operators
1 ; operator =
2 (define (assign-closure methodslot object slotname)
3 (let ((closure
4 ‘(call-methodslot ,object ,slotname args)))
5 (set-closures methodslot closure)))
6
7 ; operator ^=
8 (define (insert-closure methodslot object slotname)
9 (let ((closure

10 ‘(call-methodslot ,object ,slotname args)))
11 (set-closures
12 methodslot
13 (append closure (get-closures methodslot)))))
14
15 ; operator +=
16 (define (append-closure methodslot object slotname)
17 (let ((closure
18 ‘(call-methodslot ,object ,slotname args)))
19 (set-closures
20 methodslot
21 (append (get-closures methodslot) closure))))
22
23 ; operator -=
24 (define (remove-closure methodslot object slotname)
25 (let ((closure
26 ‘(call-methodslot ,object ,slotname args)))
27 (set-closures
28 methodslot
29 (remove (lambda (x) (equal? x closure))
30 (get-closures methodslot)))))

Listing 6: The algorithm of checking the types
1 ; is same type
2 (define (same-type? l_methodslot r_methodslot)
3 (and (equal? (get-return-type l_methodslot)
4 (get-return-type r_methodslot))
5 (equal? (get-parameter-types l_methodslot)
6 (get-parameter-types r_methodslot))))
7
8 ; is generic type
9 (define (generic-type? l_methodslot r_methodslot)

10 (and (equal? (get-parameter-types r_methodslot)
11 "Object[]")
12 (if (equal? (get-return-type l_methodslot)
13 "void")
14 (equal? (get-return-type r_methodslot)
15 "void")
16 (equal? (get-return-type r_methodslot)
17 "Object"))))

Although a method slot at the right operand of the op-
erators such as += must have the same type that the left
operand has, there is an exception. If a method slot takes
only one parameter of the Object[] type and its return type
is Object or void, then it can be used as the right operand
whatever the type of the method slot at the left operand is.
Such a method slot can be used as a generic method slot.
The type conversion when arguments are passed is implic-
itly performed. Listing 6 shows how to check the type of
two method slots in Scheme.

DominoJ allows binding method slots to constructors by
specifying class name instead of the object reference and
giving the keyword constructor as the method slot at the
left-hand side. For example,

Shape.constructor += Observer.init;

means that creating a closure calling the static method slot
init on the class object Observer and appending to the con-

Listing 7: The algorithm of binding method slots
1 ; bind methodslots by operators
2 (define (bind-methodslots
3 operator l_object l_slotname r_object r_slotname)
4 (let ((l_methodslots (get-fields l_object l_slotname))
5 (r_methodslots (get-fields r_object r_slotname)))
6 (for-each
7 (lambda (l_methodslot)
8 (for-each
9 (lambda (r_methodslot)

10 (if (or (same-type? l_methodslot
11 r_methodslot)
12 (generic-type? l_methodslot
13 r_methodslot))
14 (cond ((equal? operator "=")
15 (assign-closure l_methodslot
16 r_object
17 r_slotname))
18 ((equal? operator "^=")
19 (insert-closure l_methodslot
20 r_object
21 r_slotname))
22 ((equal? operator "+=")
23 (append-closure l_methodslot
24 r_object
25 r_slotname))
26 ((equal? operator "-=")
27 (remove-closure l_methodslot
28 r_object
29 r_slotname)))))
30 r_methodslots))
31 l_methodslots)))

structor of Shape. Here the return type of init should be
void, and the parameter types must be the same as the con-
structor. Note that the closures appended to the constructor
cannot block the object creation. This design ensures that
the clients will not get an unexpected object, but additional
objects can be created and bound to the new object. For ex-
ample, in the default closure of init, an instance of Observer
can be created and its update can be bound to the method
slot setX of the new Shape object. Using constructor at the
right-hand side is not allowed.

Since Java supports method overloading, some readers
might think the syntax of method slots have ambiguity but
that is not true. For example, the following expression does
not specify parameter types:

s.setX += o.update;

If setX and/or update are overloaded, += operator is applied
to all possible combinations of setX and update. Suppose
that there are setX(int), setX(String), update(int), and up-
date(String). += operator adds update(int) to setX(int), up-
date(String) to setX(String). If there is update(Object[]), it is
added to both setX(int) and setX(String) since it is generic.
It is possible to introduce additional syntax for selecting
method slots by parameters, but the syntax will be more
complicated. Listing 7 is the algorithm in Scheme for pick-
ing up and binding two method slots by operators.

Since a method slot may contain closures calling other
method slots, a call to the method slot can be regarded as
a sequence of method slot calls among objects. When a
method slot is explicitly called by a statement in a certain
default closure, the method slots bound to it by operators
are implicitly called by DominoJ. In order to make method
slots more flexible, DominoJ provides keywords to get the
preceding objects in the call sequence. In the default clo-

�������������	

 �����	

�����
��� 	�
	

��������	�
�����

	�
������	���������
�����
��

�����	�����	�����		
�������
��������

�����	�����	��� ���������������	�
����

��	�������������������
���

�������
 ����	

 ����

�����
���
�	�

� ������	
��	����������������
����������

� �

�������� ����	

��
�����

�����
��� ���	�
� ������	
��	����������������
����������

� �

Figure 3: The keywords $caller and $predecessor

sure, i.e. the body of method slot declaration, the caller
object can be got by keyword $caller. It refers to the ob-
ject where we start the call sequence by a statement. The
predecessor object, in other words, the object owning the
preceding method slot in the call sequence, can also be got
by the keyword $predecessor. It refers to the object owning
the closure calling the current method slot whether explic-
itly or implicitly. Taking the example of Figure 2, suppose
that we have a statement calling s.setX in the default closure
of the method slot test in another class Client:

public class Client {

public void test(Shape s) {

s.setX(10);

}

}

If test on an object instance of this class, for example c, is
executed, the relationship between the objects c, s, and o
can be described as shown in Figure 3. Note that calling
other method slots explicitly by statements in the default
closure of test, setX, or update will start separate call se-
quences. In Figure 3, using $caller in the default closure
of setX and update both returns the object c since there is
only one caller in a call sequence. However, the predecessor
objects of s and o are different. Using $predecessor in the
default closure of setX returns the object c, but using $pre-
decessor in the default closure of update returns the object
s. Note that both the apparent types of $caller and $prede-
cessor are Object because the caller and the predecessor are
determined at runtime. If current method slot is called in
a static method slot, $caller or $predecessor will return the
class object properly. The special method call proceed in As-
pectJ is introduced in DominoJ as well. It calls the default
closure of the preceding method slot. In Figure 3, calling
proceed in the default closure of update on o will execute
the default closure of setX on s since s.setX is the preceding
method slot of o.update. If there is no preceding method
slot for current one, calling proceed will raise an exception.

4. EVALUATION
To show the feasibility of DominoJ and measure the over-

heads caused by method slots, we implemented a prototype
compiler2 of DominoJ built on top of JastAddJ [27]. The
source code in DominoJ can be compiled into Java byte-
code and run by Java virtual machine. In the following mi-
crobenchmark, the standard library is directly used without
2The prototype compiler of DominoJ is available from
http://www.csg.ci.i.u-tokyo.ac.jp/projects/dominoj/

�

��

��

��

��

��

��

 �

�� �� �� �� �� �� � !� "� ��� ��� ��� ��� ��� ��� ��� � � �!� �"� ���

#
$
%
&#
'
%
()
*
%
+
,
-
#
..
)/
'
01
20
34
5
6
7
08
)/
*
)-
&+
9%
-
+
/
:
9

;<=>?

@ABA

CDEFGD@

Figure 4: The average time per method call in Java
and DominoJ

recompilation due to the performance concern. All methods
in the standard library can be called as method slots which
have only the default closure, but cannot be modified by the
operators.

4.1 Microbenchmark
In order to measure the overheads of method slots, we

executed a simple program and compared the average time
per method call in DominoJ and in plain Java. The program
calls a method that calculates sin(π/6) count times by ex-
panding Taylor series up to 100th order. In the program we
call the method with count = 10, 20, 30, ..., 200 sequentially
and observe the execution time. In order to ensure the exe-
cution time can be measured accurately, for different count
we call the method one thousand times and calculate the
average. The program was compiled by our prototype com-
piler and run on the JVM of OpenJDK 1.6.0 24 and Intel
Core i7 (2.67GHz, 4 cores) with 8GB memory.

Figure 4 shows the result of the experiment. At first the
execution time in DominoJ was 22% slower than in Java
(8.14µs against 6.67µs), but the gap was getting narrow and
almost the same as in Java after count = 70. These numbers
on execution overheads are not serious in practice since they
are not very large and can be optimized by JVM at runtime.

4.2 Enhance the method paradigm
Method slots extend the method paradigm to support the

event-handler paradigm and the aspect paradigm, while still
reserving the original behavior in the method paradigm. In
DominoJ, if the operators for method slots are not used, the
code works as in plain Java. In other words, the method
in Java can be regarded as a method slot that has only the
default closure.

We also analyze how method slots can be applied to“GoF”
design patterns [7], and classify the patterns into four groups
as shown in Table 2. The key idea of the patterns in group
I can be considered event propagation—from the outer ob-
ject to the inner object, or among colleague objects. Using
method slots can avoid code scattering caused by the pat-
tern code since event implementation is eliminated. Code
tangling caused by combining multiple patterns can be eased
as well. The patterns in group II use the inheritance to al-

Table 2: Method slots can be applied to design pat-
terns

Pattern Name Description

I

Adapter, Chain of Responsi-
bility, Composite, Decorator,
Facade, Mediator, Observer,
Proxy

Propagate events among

objects

II

Abstract Factory, Bridge,
Builder, Factory Method,
State, Strategy, Template
Method, Visitor

Change class behavior at

runtime without inheri-

tance

III
Command, Flyweight, Inter-
preter, Iterator, Prototype

Replace inheritance part

in the logic

IV Memento, Singleton Not applicable

ter the class behavior at runtime. Different implementation
can be added to the method slot instead of overriding in
subclasses. In that sense, method slots can be used as an
alternative to the polymorphism. Although method slots
are not perfect replacement for the inheritance, it is conve-
nient in particular when programmers are forced to choose
between two superclasses due to single inheritance limita-
tion. The patterns classified under group III also use the
inheritance as a part of their pattern code, so programmers
may use method slots or not depending on the situation. As
to the patterns in group IV, DominoJ is not beneficial to
object creation as what AspectJ can do in [10]. The reason
is that DominoJ does not support the inter-type declaration
and cannot stop the object creation. Details of this analysis
is available in [33].

4.3 The event-handler paradigm
To evaluate how DominoJ works for the event-handler

paradigm, first we analyze the bindings between the event
and the handler in a typical event mechanism like EScala,
and compare them with DominoJ. In languages directly sup-
porting the event-handler paradigm, events are usually in-
troduced as fields, which are separate from methods. In
order to associate fields with methods, there are three types
of binding between events (fields) and handlers (methods).
The ways used for each type of binding are usually differ-
ent in an event mechanism, and also different between event
mechanisms. Table 3 shows the ways provided by EScala.
The corresponding DominoJ syntax for the three types of
binding is also listed, but actually there is only slot-to-slot
binding in DominoJ since only method slots are involved in
the event-handler paradigm. Every method slot can play an
event role and a handler role at the same time. Listing 8
shows how to use DominoJ for the event-handler paradigm
for the shape example mentioned in Section 2. Below we will
discuss what the three types of binding are, and explain how
DominoJ provides the same advantages with the simplified
model.

The event-to-handler binding is the most trivial one since
it means what action reacts to a noteworthy change. Whether
supporting the event-handler paradigm by languages or not,
in general the event-to-handler binding is dynamic and pro-
vided by a clear manner. For example, in the Observer
pattern an observer object can call a method on the sub-
ject to register itself; in C# and EScala, += operator and
-= operator are used to bind/unbind a method to a special
field named event. In addition to the two operators, Domi-

Table 3: The roles and bindings of the event-handler
paradigm in EScala and DominoJ

Type EScala DominoJ

ro
le Event field (evt)

method slot
Handler method

b
in

d
in

g

Event-to-Handler
+= +=

-= -=

Event-to-Event

|| +=, ^=

&&

use Java expression
in the default closure
of method slots

\

filter

map

empty

any

Handler-to-Event

afterExec +=

beforeExec ^=

imperative explicit trigger is possible

Listing 8: Using DominoJ for the event-handler
paradigm

1 public class Display {
2 public void refresh(int x, int y) {
3 System.out.println("display is refreshed.");
4 }
5 }
6 public class Shape {
7 private int left = 0; private int top = 0;
8 public void setPosition(int x, int y) {
9 left = x; top = y;

10 }
11 public Shape(Display d) {
12 this.setPosition += d.refresh;
13 }
14 }
15 public class Test {
16 public static void main(String[] args) {
17 Display d = new Display();
18 Shape s = new Shape(d);
19 s.setPosition(0, 0);
20 }
21 }

noJ provides ^= operator and = operator to make it easier
to manipulate the array of handlers. In C# and EScala the
handlers for an event can be only appended sequentially and
removed individually, but in DominoJ programmers can use
= operator to empty the array directly without deducing the
state at runtime. Using ^= operator along with += operator
also makes design intentions more clear since a closure can
be inserted at the beginning without popping and pushing
back.

The second one is the event-to-event binding that enables
event composition and is not always necessary but greatly
improves the abstraction. In a modern event mechanism,
event composition should be supported. EScala allows pro-
grammers to define such higher-level events to make code
more readable. An event-to-event binding can be simulated
by an event-to-handler binding and a handler-to-event bind-
ing, but it is annoying and error-prone. In DominoJ, it is
also possible to define a higher-level event by declaring a
method slot without a default closure. Then operators +=

and ^= can be used to attach other events like what the op-
erator || in EScala does. Other operators in EScala such as

&& and map are not provided in DominoJ, but the same
logic can be represented by statements in another handlers
and attached by += operator. For example, in Listing 1 we
can declare a new event adjusted that checks if left and top
are the same as the arguments given to setPosition using the
operator && in EScala:

evt adjusted[Unit] = afterExec(setPosition)

&& ((left,top) != _._1)

adjusted += onAdjusted

where _._1 refers to the arguments given to setPosition and
onAdjusted is the reaction. In DominoJ, we can declare a
higher-level event adjusted and perform the check in another
method slot checkAdjusted:

public void adjusted(int x, int y);

public void checkAdjusted(int x, int y) {

if(!(x==left && y==top)) adjusted(x, y);

}

and then bind them as follows:

setPosition += checkAdjusted;

adjusted += onAdjusted;

Although the expression in DominoJ is not rich and declar-
ative as in EScala, they can be used to express the same
logic. In addition, the event-to-event binding in EScala is
static, so that the definition of a higher-level event in ES-
cala cannot be changed at runtime. On the other hand, it is
possible in DominoJ since the slot-to-slot binding is totally
dynamic.

The last one is handler-to-event binding, which is also
called an event trigger or an event definition. It decides
whether an event trigger can be implicit or not. In the Ob-
server pattern and C#, an event must be triggered explicitly,
so that the trigger code is scattering and tangling. EScala
provides two implicit ways and an explicit way: after the
execution of a method, before the execution of a method,
or triggering an event imperatively. In DominoJ, an event
can be triggered either implicitly or explicitly. A method
slot can not only follow the call to another method slot but
also be imperatively called. More precisely, there is no clear
distinction between the two triggering ways. In EScala af-
terExec and beforeExec are provided for statically binding
an event to the execution of a method while DominoJ pro-
vides += operator and -= operator for dynamically binding
a method slot to the execution of another method slot. This
sounds like that a method slot has two pre-defined EScala-
like events for the default closure, but it is not correct. In
DominoJ’s model the only one event is the call to a method
slot, and the default closure is also a handler like the other
closures calling other method slots. This feature makes the
code more flexible since the execution order of all handlers
can be taken into account together. As to the encapsula-
tion, in EScala the visibility of explicit events follows its
modifiers, and the implicit events are only visible within the
object unless the methods they depend on are observable.
On the other hand, the encapsulation in DominoJ relies on
the visibility of method slots. The design is simpler but lim-
its the usage because a public method slot is always visible
as an event to other objects.

There is one more important difference between EScala
and DominoJ. In DominoJ, a higher-level event can be de-
clared or not according to programmers’ design decision. In

�����������

��	���

����

��������	���������������������
����	�������������������������������

���������

��

�����������

��	���

�����������

��	���

����

��

��

��

����
������������ ������������������� ���������������������������

Figure 5: The execution order of the shape example
in EScala and DominoJ

order to explain the difference, we use a tree graph to repre-
sent the execution order in the shape example by regarding
setPosition as the root. As shown in Figure 5, we use rect-
angles, circles, and rounded rectangles to represent meth-
ods, events, and method slots, respectively. When a node
is called, the children bound by beforeExec or ^= must be
executed first, followed by the node itself and the children
bound by afterExec or +=. Figure 5 (a) is the execution or-
der of Listing 1, and Figure 5 (b) is the one of Listing 8. In
the DominoJ version, the event moved is eliminated and its
child refresh is bound to setPosition directly since we do not
need additional events in such simple case. DominoJ is eas-
ier and simpler to apply the event-handler paradigm when
events are not complicated but used everywhere. In EScala,
events must be created since methods cannot be bound to
each other directly. However, such events are still necessary
if we want to keep the abstraction. In that case, method
slots can be used as the events in EScala by declaring them
without a default closure. For example, the event moved
in Line 11 of Listing 1 can be translated into the following
statements:

public void moved();

setPosition += moved;

Figure 5 (c) is another DominoJ version, which has the
higher-level event as the EScala version. In DominoJ, pro-
grammers can choose between the simplified one and the
original one depending on the situation.

Note that the number of lines of Listing 8 is one line longer
than Listing 1 because the syntax of Scala looks more com-
pact than Java. In Java the constructor and the fields used
inside a class must be declared explicitly while they are omit-
ted in Scala. In Listing 8 the constructor takes two more
lines than Listing 1. If we do not take this into account, the
EScala version is one line longer than the DominoJ version
due to additional event declaration.

The line of code can also be analyzed according to Table 3.
With regard to the roles, additional event declarations are
necessary in EScala while they are combined into one decla-
ration in DominoJ as we discussed above. For the event-to-
handler binding, both the operators provided by EScala and
DominoJ take one line. For the event-to-event binding, the
operators provided by EScala can be written in the same
line, but in DominoJ += operator and ^= operator cannot
be merged into one line. In that case the code in DominoJ
is longer than the EScala one. For example, a higher-level
event changed can be defined by three events resized, moved,
and clicked:

evt changed[Unit] = resized || moved || clicked

but in DominoJ they must be defined as follows:

resized += changed;

moved += changed;

clicked += changed;

That is why the expression in EScala is richer but compli-
cated. Introducing appropriate syntax sugar to DominoJ
to allow putting operators in one line is also possible, but
we think it makes the design complicated. However, in this
example we can also find passing the event value in EScala
takes effort. In EScala, as far as we understand, only a value
is kept in an event field. If we want to gather up the argu-
ments x and y given to setPosition, and then pass to moved
and changed, we need to declare additional classes such as
Point and declare the events with the new type rather than
Unit3. The additional classes increase the number of lines
as well. For the handler-to-event binding, afterExec and be-
foreExec in EScala can define an anonymous event and share
the same line of an event-to-handler binding. To sum up, in
DominoJ the event declarations may be eliminated and thus
the number of lines of source code can be reduced. On the
other hand, the number of code of DominoJ version is longer
when translating a complex EScala expression composed of
a number of operators since DominoJ has less primitive syn-
tax. DominoJ makes code clear because each method slot
has a name explicitly, and each line for binding only defines
the relation between two method slots.

4.4 The aspect paradigm
DominoJ can be used to express the aspect paradigm as

well. In order to discuss language constructs concretely,
we compare DominoJ with the most representative aspect-
oriented language—AspectJ. The call to a method slot is a
join point, and other method slots can be bound to it as
advices. Note that aspect-oriented programming is broader
as discussed in [14] and not restricted to the AspectJ style,
which is the point-advice model. In this subsection first we
analyze the necessary elements in the point-advice model,
and compare the constructs provided by AspectJ and Domi-
noJ. Then we use DominoJ to rewrite the shape example in
Listing 2 and discuss the differences.

Since the purpose of the aspect paradigm is to modularize
the crosscutting concerns, we need a method-like construct
to contain the code piece, a way to attach the method-like
construct to a method execution, and a class-like construct
to group the method-like construct. In AspectJ, the class-
like construct is the aspect construct, the method-like con-
struct is the advice body, and the way of attaching is de-
fined by the pointcut and advice declaration. In DominoJ,
the method slot and the class construct in plain Java are
used and only operators for method slots are introduced for
attaching them. The method slots bound by += operator
or ^= operator are similar to after/before advices, respec-
tively. The method slots bound by = operator are similar
to around advices and proceed can be used to execute the
original method slot. It is expected that DominoJ cannot
cover all expression in AspectJ since DominoJ’s model is
much simpler. For example, in DominoJ the inter-type dec-
laration and the reflection are not provided. According to

3In EScala, declaring events with Unit type means that no
data are passed [9].

Table 4: The mapping of language constructs for the
aspect paradigm in AspectJ and DominoJ

Construct AspectJ DominoJ

grouping aspect class

code piece advice body
method slot body

(default closure)

pointcut

and advice

declaration

after returning and execution += and $retval

before and execution ^=

around =

this $caller

target $predecessor

args by parameters

the three elements, Table 4 lists the mapping of language
constructs in AspectJ and DominoJ.

In AspectJ programmers need to understand the special
instance model for the aspect construct, but in DominoJ the
class construct is reused. Although the instances of the con-
struct for grouping need to be managed manually, there is no
need to learn the new model and keywords like issingleton,
pertarget, and percflow. In DominoJ programmers can cre-
ate an instance of the aspect-like class and attach its method
slots to specified objects according to the conditions at run-
time. If the behavior of issingleton is preferred, programmers
can declare all fields including method slots in the aspect-
like class as static since static method slots are supported by
DominoJ. The shape example of AspectJ in Section 2 can
be rewritten by DominoJ as shown in Listing 9. Here the
class UpdateDisplay is the aspect-like class. In Line 14, we
attach the advice refresh in a static method slot init, so all
Shape objects will share the class object of UpdateDisplay.
Furthermore, we let init be executed after the constructor of
Shape, so that we can avoid explicitly attaching refresh every
time a Shape object is created. Moreover, we do not have to
modify the constructor of Shape. If we need to count how
many times setPosition is called for each Shape and thus per-
target is preferred, we can rewrite the class UpdateDisplay as
shown in Listing 10. Every time a Shape object is created,
a UpdateDisplay object is created for it implicitly. Note that
the object ud will not be garbage-collected since its method
slot count is attached to another method slot.

In DominoJ, there is no difference between methods and
advices while in AspectJ they are different constructs. Al-
though an advice in AspectJ can be regarded as a method
body, it cannot be directly called. If the code of an advice
is reusable, in AspectJ we must move it to another method
but in DominoJ it is not necessary.

The pointcut and advice declaration in AspectJ and Domi-
noJ are similar but not the same. First, what they target at
is different. AspectJ is class-based while DominoJ is object-
based. In other words, what AspectJ targets at are all object
instances of a class and its subclasses but what DominoJ
targets at are individual object instances. However, it is
possible to emulate the class-based behavior in DominoJ by
the code attaching to the constructor of a class as shown in
Line 16 of Listing 9. Second, unlike AspectJ that has call
and execution pointcut, in DominoJ only execution pointcut
is supported. This limits the usage but reduces the complex-
ity. In fact, the relation between advices is quite different
in AspectJ and DominoJ. In AspectJ an advice is attached

Listing 9: Using DominoJ as the aspect paradigm
1 public class Display {
2 public static void refresh(int x, int y) {
3 System.out.println("display is refreshed.");
4 }
5 }
6 public class Shape {
7 private int left = 0; private int top = 0;
8 public void setPosition(int x, int y) {
9 left = x; top = y;

10 }
11 }
12 public class UpdateDisplay {
13 public static void init() {
14 ((Shape)$predecessor).setPosition += Display.refresh;
15 }
16 static { Shape.constructor += UpdateDisplay.init; }
17 }
18 public class Test {
19 public static void main(String[] args) {
20 Shape s = new Shape();
21 s.setPosition(0, 0);
22 }
23 }

Listing 10: Rewrite UpdateDisplay for pertarget
1 public class UpdateDisplay {
2 private int total = 0;
3 public void count(int x, int y) {
4 total++;
5 }
6 public static void init() {
7 UpdateDisplay ud = new UpdateDisplay();
8 ((Shape)$predecessor).setPosition += ud.count;
9 }

10 static { Shape.constructor += UpdateDisplay.init; }
11 }

to methods and cannot be directly attached to a specific ad-
vice, but in DominoJ a method slot is not only an advice but
also a method. For example, if we need another advice for
checking the dirty region in Listing 2, we may prepare an as-
pect CheckDirty containing this advice as shown in Figure 6
(a). However, the advice can only be attached to setPosition.
In DominoJ, the advice can be attached to either setPosition
or init as shown in Figure 6 (b).

The behavior of proceed in AspectJ and DominoJ is also a
little different. The proceed in DominoJ should be used only
along with = operator since it calls the default closure in the
preceding method slot rather than the next closure. The
root cause of the difference is the join point model: what
DominoJ adopts is the point-in-time model while the one
AspectJ adopts is the region-in-time model [15]. In other
words, in AspectJ the arrays of the three types of advices
are separate, but in DominoJ there is only one array. If
+= operator or ^= operator are used after using = operator
to attach a method slot containing proceed, the behavior is
not as expected as in AspectJ. Figure 7 shows an example
of around advice in AspectJ and DominoJ. In AspectJ, the
around advices localCache and memCache are attached to
queryData in order. In DominoJ, we can do it similarly:

queryData = localCache;

localCache = memCache;

then using proceed in memCache and localCache will call the
default closure of their preceding method slot, localCache

�����

�����������

������	
����

�	
���

�����

�����������

������	
����

����

�����	
��

����

��������	���������������������
����	������������������������������

����
������������� �������������������

�

������	
��

�	
���

Figure 6: Adding another advice to the shape ex-
ample in AspectJ and DominoJ

���������� ���������

���������� 	
��	����

�����������������

������ ���������

	�
��� 	
��	����

	�
���������� H I

JKLMNNOPQR S

H I

JKLMNNOPQR S

H I

JKLMNNOPQR S

H I

JKLMNNOPQR S

��������	
�������� ������������������

�����	�
���	��������	
�����������

�����	�
���	��� ����
�
����
�

	�������	������	�
��������	���

�������	�������	��

Figure 7: Calling proceed in AspectJ and DominoJ

and queryData, respectively. Another difference is that the
args pointcut and the wildcard used in call and execution
pointcuts in AspectJ are not supported in DominoJ. Method
slots are simply matched by their parameters. If the over-
loading is not taken into account, the operators in DominoJ
only select one method slot in one line statement.

As to the number of lines, the two versions are about the
same. Comparing them line by line might not make much
sense since there is no simple translation between DominoJ
and AspectJ.

4.5 Summary of the coverage
For the event-handler paradigm, there are three signifi-

cant properties: implicit events, dynamic binding, and event
composition. DominoJ supports them all by method slots
and only four operators. Rewriting a complex expression of
event composition in EScala is also possible though it takes
more lines. Introducing additional syntax may resolve the
issue but it also complicates the model. As a result of regard-
ing method slot calls as events, giving an event a different
visibility from the methods it depends on is not supported
by DominoJ.

The aspect paradigm of AspectJ has three important fea-
tures that cannot be provided by the event-handler paradigm:
around advice, obliviousness, and inter-type declaration. In
DominoJ the around advice can be emulated by assigning
a closure calling another method slot. DominoJ also sup-
ports the obliviousness in AspectJ by reusing the class con-
struct as the aspect construct and attaching a method slot
to a constructor of the target class. The inter-type dec-
laration is not available in DominoJ. A possible solution
is introducing a default method slot for undefined fields in
a class like Smalltalk’s doesNotUnderstand or what the no-
applicable-method does in CLOS. In addition to being used
for the event-handler paradigm and the aspect paradigm,
DominoJ allows programmers to use both paradigms to-
gether.

5. RELATED WORK
The delegation introduced by C# [17] allows programmers

to declare an event, define its delegate type, and bind a
corresponding action to the event. Event composition is
also supported by adding a delegate to two or more events.
Although the delegate interface hides the executor from the
caller, implicit events are not supported. The event must be
triggered manually when the change happens. However, C#
is able to emulate DominoJ using an unusual programming
style: declaring an additional event for every method and
always triggering the event rather than the method. From
the point of view, a delegate is very similar to a method
slot except the operator += in C# copies the handlers in the
event but not creates a reference to the event. However, as
in EScala, events and methods are still separate language
constructs. Supporting by only one construct means that
programmers do not need to decide between using such an
unusual style or a normal style at the design stage whether
newer modules might regard those methods as events or not.
Furthermore, it is annoying that event fields and methods
in C# cannot share the same name. Another disadvantage
is that we have to ensure that there is at least one delegate
for the event before triggering it. Otherwise it will raise
an exception. This is not reasonable from the viewpoint of
the event mechanism since it just means no one handles the
event. In DominoJ no handlers for an event does not raise
an exception and the one that triggers an event on a method
slot is unaware of handlers.

There are a number of research activities on the inte-
gration of object-oriented programming and aspect-oriented
programming. Those research use a single dispatch mecha-
nism to unify OOP and AOP and reveal that the integra-
tion makes the model clearer, reusable, and compositable.
Delegation-based AOP [11, 23] elegantly supports the core
mechanisms in OOP and AOP by regarding join points as
loci of late binding. The model proposed in [12] provides
dedicated abstractions to express various object composi-
tion techniques such as inheritance, delegation, and aspects.
The difference is that DominoJ integrates the event-handler
paradigm and the aspect paradigm based on OOP. Another
difference is that we propose a new language construct rather
than a machine or language model, which makes it compat-
ible with existing object-oriented languages such as Java.
Other work such as FRED [21], composition filters [1], pred-
icate dispatching [5], and GluonJ [2] can also be regarded as
such integration work.

The method combination in Flavors and CLOS makes re-
lated methods easy to combine but not override. By default
the combined method in Flavors first calls the before meth-
ods in the order that flavors are combined, following by the
first primary method, then the after methods in the reverse
order. The return value of the combined method is sup-
plied by the primary method, while the return values of the
before and after methods are ignored. Similarly, CLOS pro-
vides a standard method combination for generic functions.
For a generic function call, all applicable methods are sorted
before execution in the order the most specific one is first.
Besides the primary, before, and after methods, CLOS pro-
vides the around methods and call-next-method for the pri-
mary and around methods. From the viewpoint of method
combination, the default closure of a method slot looks like
a primary method that can be dynamically added to other
method slots as a before or after method, and even as an

around method by assigning to the target method slot then
using proceed as call-next-method. It is also easier to express
the method combination as a hierarchy in DominoJ.

With regard to the event mechanism, several research ac-
tivities are devoted to event declaration. Ptolemy [22] is a
language with quantified and typed events, which allows a
class to register handlers for events, and also allows a handler
to be registered for a set of events declaratively. It has the
ability to treat the execution of any expression as an event.
The event model in Ptolemy solves the problems in implicit
invocation languages and aspect-oriented languages. Even-
tJava [6] extends Java to support event-based distributed
programming by introducing the event method, which are a
special kind of asynchronous method. Event methods can
specify constraints and define the reaction in themselves.
They can be invoked by an unicast or broadcast way. Events
satisfying the predicate in event method headers are con-
sumed by a reaction. Context-aware applications can be
accommodated easily by the mechanism. Both the two re-
search make events clear and expressive, but they do not
support implicit events, which is one of the most significant
properties as an event mechanism, whereas DominoJ sup-
ports it. Moreover, all events in their model are class-based,
so that events for a specified object have to be filtered in
the handlers. The binding in DominoJ is object-based, so it
can describe the interaction between objects more properly.

On the other hand, several research support the event-
handler paradigm upon the aspect paradigm. ECaesarJ [19]
introduces events into aspect-oriented languages for context-
handling. The events can be triggered explicitly by method
calls or defined by pointcuts implicitly. EventCJ [13] is a
context-oriented programming language that enables con-
trolling layer activation modularly by introducing events.
By declaring events, we can specify when and which instance
layer is activated. It also provides layer transition rules to
activate or deactivate layers according to events. EventCJ
makes it possible to declaratively specify layer transitions in
a separate manner. Comparing with DominoJ, using events
in the two languages may beak modular reasoning since their
event models rely on the pointcut-advice model. Further-
more, events are introduced as a separate construct from
methods.

Flapjax [16] proposes a reactive model for Web applica-
tions by introducing behaviors and the event streams. Flap-
jax lets clients use the event-handler paradigm by setting
data flows. The handlers for an event can be registered
in an implicit way. However, unlike other event mecha-
nisms, it requires programmers to use a slightly different
event paradigm. The behavior of DominoJ is more similar
to the typical event mechanism while it has the basic ability
for the aspect paradigm as well.

Fickle [4] enables re-classification for objects at runtime.
Programmers can define several state classes for a root class,
create an object at a certain state, and change the member-
ship of the object according to its state dynamically. With
re-classification, repeatedly creating new objects between
similar classes for an existing object can be avoided. Both
Fickle and DominoJ allow changing the class membership of
an object at runtime, so other objects holding the identity
of the object can be unaware of the changes. The difference
is that Fickle focuses on the changes between states while
DominoJ focuses on the effect of calling specified methods.
Fickle provides better structural ability such as declaring

new fields in state classes. However, if the relation between
states is not flat and cannot be separated clearly, program-
mers still have to maintain the same code between state
classes. The common code to only part of states can be
gathered up into one class in DominoJ. Furthermore, Domi-
noJ is easier to use for the event-handler paradigm.

The lambda expressions [20] will be introduced in Java
8 as a new feature to support programming in a multicore
environment. With the new expression, declaring anony-
mous classes for containing handlers can be eliminated. The
lambda expression of Java 8 is a different construct from
methods but method slots can be regarded as a superset of
methods.

6. CONCLUSIONS
We discussed the similarity between the language con-

structs for the event-handler paradigm and the aspect paradigm,
which motivates us to propose a new language construct,
named method slot, to support both the two paradigms. We
presented how a method slot is introduced as a language
construct in a Java-based language, DominoJ. We then dis-
cussed how method slots can be used for the two paradigms
and the coverage of expressive ability. Although the expres-
sion of method slots is not as rich as other languages, it
is much simpler and able to express most functionality in
the two paradigms. We also showed its feasibility by im-
plementing a prototype compiler and running a preliminary
microbenchmark.

7. REFERENCES
[1] L. Bergmans and M. Aksit. Composing crosscutting

concerns using composition filters. Commun. ACM,
44(10):51–57, Oct. 2001.

[2] S. Chiba, A. Igarashi, and S. Zakirov. Mostly modular
compilation of crosscutting concerns by contextual
predicate dispatch. In OOPSLA ’10, pages 539–554.
ACM, 2010.

[3] J. Dedecker, T. V. Cutsem, S. Mostinckx, and W. D.
Meuter. Ambient-oriented programming in
AmbientTalk. In ECOOP ’06, pages 230–254.
Springer, 2006.

[4] S. Drossopoulou, F. Damiani, D. Dezani-Ciancaglini,
and P. Giannini. Fickle: Dynamic object
re-classification. In ECOOP ’01, pages 130–149, 2001.

[5] M. Ernst, C. Kaplan, and C. Chambers. Predicate
dispatching: A unified theory of dispatch. In ECOOP
’98, pages 186–211. Springer-Verlag, 1998.

[6] P. T. Eugster and K. R. Jayaram. EventJava: An
extension of Java for event correlation. In ECOOP
’09, pages 570–594, 2009.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison-Wesley, 1994.

[8] D. Garlan, S. Jha, D. Notkin, and J. Dingel.
Reasoning about implicit invocation. In SIGSOFT
’98/FSE-6, pages 209–221. ACM, 1998.

[9] V. Gasiunas, L. Satabin, M. Mezini, A. Núñez, and
J. Noyé. EScala: modular event-driven object
interactions in Scala. In AOSD ’11, pages 227–240.
ACM, 2011.

[10] J. Hannemann and G. Kiczales. Design pattern
implementation in Java and AspectJ. In OOPSLA ’02,
pages 161–173. ACM, 2002.

[11] M. Haupt. A machine model for aspect-oriented
programming. In ECOOP ’07, pages 501–524, 2007.

[12] W. Havinga, L. Bergmans, and M. Aksit. A model for
composable composition operators: expressing object
and aspect compositions with first-class operators. In
AOSD ’10, pages 145–156. ACM, 2010.

[13] T. Kamina, T. Aotani, and H. Masuhara. EventCJ: a
context-oriented programming language with
declarative event-based context transition. In AOSD
’11, pages 253–264. ACM, 2011.

[14] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. marc Loingtier, and J. Irwin.
Aspect-oriented programming. In ECOOP ’97.
Springer-Verlag, 1997.

[15] H. Masuhara, Y. Endoh, and A. Yonezawa. A
fine-grained join point model for more reusable
aspects. In APLAS ’06, pages 131–147, 2006.

[16] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper,
M. Greenberg, A. Bromfield, and S. Krishnamurthi.
Flapjax: a programming language for ajax
applications. In OOPSLA ’09, pages 1–20. ACM, 2009.

[17] Microsoft Corporation. C# language specification.

[18] Microsoft Corporation. Messages and message queues.

[19] A. Núñez, J. Noyé, and V. Gasiūnas. Declarative
definition of contexts with polymorphic events. In
COP ’09, pages 2:1–2:6. ACM, 2009.

[20] Oracle Corporation. OpenJDK: Project Lambda.
http://openjdk.java.net/projects/lambda/.

[21] D. Orleans. Incremental programming with extensible
decisions. In AOSD ’02, pages 56–64. ACM, 2002.

[22] H. Rajan and G. T. Leavens. Ptolemy: A language
with quantified, typed events. In ECOOP ’08, pages
155–179, 2008.

[23] H. Schippers, D. Janssens, M. Haupt, and
R. Hirschfeld. Delegation-based semantics for
modularizing crosscutting concerns. In OOPSLA ’08,
pages 525–542. ACM, 2008.

[24] Sun Microsystems. Abstract window toolkit.
http://java.sun.com/products/jdk/awt/.

[25] The AspectJ Project.
http://www.eclipse.org/aspectj/.

[26] The Boost Project. Boost.Signals.
http://www.boost.org/libs/signals/.

[27] The JastAdd Project. JastAddJ: The JastAdd
Extensible Java Compiler.
http://jastadd.org/web/jastaddj/.

[28] The Qt Project. Signals & Slots.
http://qt-project.org/doc/signalsandslots.

[29] The SAX project. Simple api for xml.
http://www.saxproject.org/.

[30] The Self project.
http://selflanguage.org/.

[31] The X.Org project. Xlib in x window system.
http://www.x.org/.

[32] J. Widom and S. J. Finkelstein. Set-oriented
production rules in relational database systems. In
SIGMOD ’90, pages 259–270. ACM Press, 1990.

[33] Y. Zhuang and S. Chiba. Applying DominoJ to GoF
Design Patterns. Technical report, Dept. of Math. and
Comp., Tokyo Institute of Technology, 2011.

