
Method Slots: 

  Supporting Methods, Events, and Advices 

  by a Single Language Construct 

YungYu Zhuang and Shigeru Chiba 
 

The University of Tokyo 



Method Paradigm in OOP 

More and more paradigms are 

supported by dedicated constructs 

2 

Event-handler Paradigm 

EScala, C#, EventCJ, Ptolemy, … 

Aspect Paradigm 

AspectJ, AspectC++, CaesarJ, … 

event, 

handler 

aspect, 

advice, 

pointcut 

class, 

field, 

method 



What we want to learn are paradigms, 

Not constructs! 

 Supporting by new constructs is a trend 

◦ Even for existing paradigms like event-handler 

◦ e.g. C# and EScala 

 

 However, not all constructs are easy to 
learn! 

◦ e.g. AspectJ 

 

 How about reusing constructs? 

3 



How about integrating the constructs 

in the three paradigms 

4 

OOP 

Aspect 
Event-

handler 

An aspect is a kind of class. 

Advice is a kind of method. 

Events are bound to methods. 

Handlers are methods. 

Pointcuts look like events. 

Advices work as handlers. 

 Their constructs and implementation are very similar 

◦ Although the problems they address are quite different 



Goal 

 Develop a new language supporting 

◦ Event-handler paradigm 

◦ Aspect paradigm 

   By a single construct! 

 

 Extend the most basic one 

◦ Method paradigm 

(a method in JavaScript) 

5 



You know the methods in JavaScript… 

 Methods (function closures) 

can also be held in fields 
◦ setX = function(int nx) { this.x = nx; }     // assign the method 

◦ setX          // return the method 

◦ setX(10)          // call the method 

6 

object s : class Shape 

 

int x 

function setX 
(void (int nx)) { this.x = nx; } 

| this = s 



Our Proposal: Method Slots 

 Extend the Method paradigm 

◦ A “field” holds an array of function closures 

rather than a function closure 

7 

object s : class Shape 

 

int x 

methodslot setX 
(void (int nx)) { target.update(nx); } 

| target = o 

(void (int nx)) { this.x = nx; } 
| this = s 



The behavior of a method slot 

 When a method slot is called 

◦ All closures in it are executed in order 

 With the arguments given to the method slot 

 If its return type is not void 
◦ The return value is returned by the last closure 

 Every closure can get the return value of the previous 

closure by a keyword $retval 

 A default value (0/false/null) is given to the first closure 

 

 

 

 No closures in it? Just returns the default value 

8 

C1 C2 methodslot                        … CN-1 CN 



DominoJ: introduce method slots into Java 

 No methods, only method slots 

 No closures in Java! 

     Give 4 operators to handle closures in a method slot 

◦ <expr>.<methodslot> <op> <expr>.<methodslot>; 

 Method slots at both sides share the same type 
(return type and parameter types) 

 Create a closure calling the right one, 
and add or remove to/from the left one 
    += append to the end of the array 
    ^= insert at the beginning of the array 
    -= remove such closures from the array 
    = add and remove the others from the array 

◦ For example, s.setX += o.update; 
 Create a closure { o.update(…); } and append it to s.setX 

9 



Unlike JavaScript, 

Java has class declaration and inheritance! 

 A method slot is an object’s property 

 Static method slots are kept on the class objects 

 Cannot be declared as local variables 

 

 Declare the same method slot in subclasses 

 Overrides the one in the superclass 

 The overridden one can be called through super 

(it only contains the default closure) 

 The overriding one is selected according to the 

actual type of the object 

10 



DominoJ code at a glance 

 The declaration looks like 

a method declaration 

◦ The body is the default 

closure (optional) 

11 

object s: Class Shape 

 

int x 

methodslot setX (void (int nx)) { this.x = nx; } 
| this = s 

public class Shape { 
    public int x; 
    public void setX(int nx) { 
        // default closure 
        this.x = nx; 
    } 
} 



An example of using Event-handler in 

typical event mechanisms 

 Suppose the Display object should be refreshed 
after the position of Shape objects are set 

 The typical way in an event mechanism like 
EScala or C# 

◦ Expose an event moved for setPosition in s 
◦ Bind d.refresh to moved 

12 

object s: Class Shape 

 

event moved 

 

method setPosition 

object d: Class Display 
 

 

method refresh 

It is possible 

in DominoJ 



Use DominoJ to write the Event-handler example 

13 

object s: Class Shape 

 

int left; 

int top; 

methodslot setPosition 

object d: Class Display 
 

 

methodslot refresh (void (int x, int y)) { … // refreshing } 
| this = d 

(void (int x, int y)) { target.refresh(x, y); } 
| target = d 

(void (int x, int y)) { this.left=x; this.top=y; } 
| this = s 

  s.setPosition += d.refresh;  // Add a closure calling d.refresh 
  s.setPosition(0, 0);   // d.refresh will be called 

1 

2 

3 



Compare the code for this example 

in EScala and in DominoJ 

 In EScala (based on Scala) 
class Display() { 
  def refresh() { 
    System.out.println("display is refreshed.") 
  } 
} 
class Shape(d: Display) { 
  var left = 0; var top = 0 
  def setPosition(x: Int, y: Int) { 
    left = x; top = y 
  } 
  evt moved[Unit] = afterExec(setPosition) 
  moved += d.refresh 
} 

14 

 In DominoJ (based on Java) 
public class Display { 
  public void refresh(int x, int y) { 
    System.out.println("display is refreshed."); 
  } 
} 
public class Shape { 
  private int left = 0; private int top = 0; 
  public void setPosition(int x, int y) { 
    left = x; top = y; 
  } 
  public Shape(Display d) { 
    this.setPosition += d.refresh; 
  } 
} 

 The event declaration can be omitted. 

◦ Any public method slots are regarded as events. 



This break the encapsulation? No! 

 Follow the visibility in OOP 

◦ Rely on the visibility of method slots 

◦ A public method slot is always visible as an 

event to other objects 

 

 Simpler but limited 

◦ Cannot separate the event from a method 

 Declare a higher-level event? 

15 

“Any method slots can be events.” 



Higher-level events are also possible 

 Declare an empty method slot, 
and let it be triggered by another one 
public void moved(); 
setPosition += moved; 

16 

setPosition 

refresh 

moved 

: Method,                   : Event,                   : Method Slot 

afterExec 

+= 

setPosition 

refresh 

setPosition 

refresh 

moved 

+= 

+= 

+= 

(a) EScala version (b) DominoJ version (c) Another DominoJ version 



Compare DominoJ with EScala 
Type EScala DominoJ 

ro
le

 Event field (evt) 
method slot 

Handler method 

b
in

d
in

g 

Event-to-Handler 
+= += 

-= -= 

Event-to-Event 

|| +=, ^= 

&& 

\ 

filter 

map 

empty 

any 

use Java expression 

in the default closure 

of method slots 

Handler-to-Event 

afterExec += 

beforeExec ^= 

imperative explicit trigger is possible 

17 



Check the example 

from the viewpoint of Aspect 

 Suppose we have 

◦ Display class and Shape class 

◦ A crosscutting concern: when to refresh 

 In AspectJ, we can write such an aspect 

18 

  public aspect UpdateDisplay { 

    after() returning: 

     execution( 

      void Shape.setPosition(int, int)) { 

        Display.refresh(); 

    } 

  } 



In DominoJ, classes can be aspects, 

method slots can be advices 

 Class-based behaviors? 
◦ Emulate by binding method slots in constructors 

 

 

 Obliviousness? 
◦ Attach to public method slots (including constructors) 

 No complicated instantiation models 
◦ Need to manage objects manually 

19 

    public Shape() {  this.setPosition += Display.refresh;  } 

  public class UpdateDisplay { 

    public static void init() { 

      ((Shape)$predecessor).setPosition += Display.refresh; 

    } 

    static { Shape.constructor += UpdateDisplay.init; } 

  } 



Using the keywords $predecessor and $caller 

to get preceding objects in a call sequence 

 Suppose s.setPosition is called in c.test 
where c is an object of class Client 

    c.test  s.setPosition  d.refresh 

20 

object c : class Client 

 

  methodslot test 

default closures 

closures created by operators implicitly call according to bindings 

explicitly call in the default closure 

objects given by the keywords 

object s : class Shape 

 

  methodslot setPosition 

{ System.out.println($precedessor==$caller); 
:                                      } 

object d : class Display 

 

  methodslot refresh 
{ System.out.println($precedessor==$caller); 

:                                      } 



Rewrite AspectJ code by DominoJ 

 In AspectJ 
public class Display { 
  public static void refresh() { 
    System.out.println("display is refreshed."); 
  } 
} 
public class Shape { 
  private int left = 0; private int top = 0; 
  public void setPosition(int x, int y) { 
    left = x; top = y; 
  } 
} 
public aspect UpdateDisplay { 
  after() returning: 
   execution( 
    void Shape.setPosition(int, int)) { 
      Display.refresh(); 
  } 
} 

21 

 In DominoJ 

public class Display { 

  public static void refresh(int x, int y) { 

    System.out.println("display is refreshed."); 

  } 

} 

public class Shape { 

  private int left = 0; private int top = 0; 

  public void setPosition(int x, int y) { 

    left = x; top = y; 

  } 

} 

public class UpdateDisplay { 

  public static void init() { 

    ((Shape)$predecessor).setPosition 

                                                   += Display.refresh; 

  } 

  static { Shape.constructor += UpdateDisplay.init; } 

} 

 Obliviousness and class-based behaviors are possible 



Compare DominoJ with AspectJ 

Construct AspectJ DominoJ 

grouping aspect class 

code piece advice body 
method slot body 

(default closure) 

pointcut 

and advice 

declaration 

after returning and execution += and $retval 

before and execution ^= 

around = 

this $caller 

target $predecessor 

args by parameters 

22 



Advices for advices are possible 

 If you think attaching CheckDirty to UpdateDisplay 
is more meaningful… 

◦ Yes, you can do it in DominoJ! 

23 

Shape 

setPosition 

UpdateDisplay 

advice 

Shape 

setPosition 

UpdateDisplay 

init 

CheckDirty 

verify 

: Method,                   : Advice,                 : Method Slot 

(a) AspectJ version (b) DominoJ version 

① 

② CheckDirty 

advice 



AspectJ 

EScala 

DominoJ 

Event-handler vs. Aspect 
 In my opinion, they are the same except 

◦ Object-based or Class-based? 

◦ Non-obliviousness or Obliviousness? 
 Impossible to support contradictory things at the same time 
    unless giving both constructs 

 DominoJ want to make all available by one construct, 
and let programmers decide how to use 
◦ Different from Object-based AOP languages?  Simpler 

24 

Class-based 

Object-based 

Obliviousness 

Non-

obliviousness 

We think it’s 

more flexible! 

Can emulate it! 

Use private! 



Related Work 

 The delegation in C# 

◦ A delegate is similar to a method slot 

◦ Events and methods are separate constructs 

 Delegation-based AOP 

◦ Supports the mechanisms in OOP and AOP 

◦ A proxy delegates messages to an object 

 Ptolemy 

◦ Treat the execution of any expression as an event 

◦ Events are global, class-based 

25 



Conclusion 

 We proposed a simple and generic construct 

   ---Method slots 

◦ Covering most functionality of 

 Event-handler paradigm 

 Lack of rich event expression 

 Aspect paradigm 

 No inter-type declaration and reflection 

 

 Future work 
◦ Supporting more paradigms 

◦ Case study 

26 


